BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28444598)

  • 1. Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis.
    Zhang Z; Wang M; Gao R; Yu X; Chen G
    3 Biotech; 2017 May; 7(1):54. PubMed ID: 28444598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A.
    Liu S; Zhang M; Hong D; Fang Z; Xiao Y; Fang W; Zhang X
    Enzyme Microb Technol; 2023 Sep; 169():110289. PubMed ID: 37473697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration.
    Cao LC; Wang ZJ; Ren GH; Kong W; Li L; Xie W; Liu YH
    Biotechnol Biofuels; 2015; 8():202. PubMed ID: 26628916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass.
    Rocha-Martín J; Martinez-Bernal C; Pérez-Cobas Y; Reyes-Sosa FM; García BD
    Bioresour Technol; 2017 Nov; 244(Pt 1):48-56. PubMed ID: 28777990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production.
    Singhania RR; Patel AK; Sukumaran RK; Larroche C; Pandey A
    Bioresour Technol; 2013 Jan; 127():500-7. PubMed ID: 23069613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimisation of
    Singh N; Sithole BB; Govinden R
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application.
    Singhania RR; Patel AK; Pandey A; Ganansounou E
    Bioresour Technol; 2017 Dec; 245(Pt B):1352-1361. PubMed ID: 28596076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.
    Sørensen A; Lübeck PS; Lübeck M; Teller PJ; Ahring BK
    Can J Microbiol; 2011 Aug; 57(8):638-50. PubMed ID: 21815831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J; Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a thermophilic and glucose-tolerant GH1 β-glucosidase from hot springs and its prospective application in corn stover degradation.
    Huang YY; Lv ZH; Zheng HZ; Zhu Q; Liu MT; Sang P; Wang F; Zhu D; Xian WD; Yin YR
    Front Microbiol; 2023; 14():1286682. PubMed ID: 38179451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical kinetic modelling of hydrolysis of a steam-explosion pre-treated corn stover: A two-step approach.
    Wojtusik M; Villar JC; Ladero M; Garcia-Ochoa F
    Bioresour Technol; 2018 Nov; 268():592-598. PubMed ID: 30138871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases.
    Rodrigues MA; Teixeira RS; Ferreira-Leitão VS; da Silva Bon EP
    Biotechnol Biofuels; 2015; 8():25. PubMed ID: 25763103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative kinetic analysis of two fungal beta-glucosidases.
    Chauve M; Mathis H; Huc D; Casanave D; Monot F; Lopes Ferreira N
    Biotechnol Biofuels; 2010 Feb; 3(1):3. PubMed ID: 20181208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars.
    Harnpicharnchai P; Champreda V; Sornlake W; Eurwilaichitr L
    Protein Expr Purif; 2009 Oct; 67(2):61-9. PubMed ID: 18602476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the cellobiose-hydrolysis activity and glucose-tolerance of a thermostable β-glucosidase through rational design.
    Liu X; Cao L; Zeng J; Liu Y; Xie W
    Int J Biol Macromol; 2019 Sep; 136():1052-1059. PubMed ID: 31199970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei.
    Wang M; Lu X
    Front Microbiol; 2016; 7():620. PubMed ID: 27199949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover.
    Du J; Liang J; Zhang X; Wang J; Li W; Song P; Feng X
    Bioresour Technol; 2022 Jan; 343():126113. PubMed ID: 34648965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.