These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28444840)
1. TOPAS Simulation of the Mevion S250 compact proton therapy unit. Prusator M; Ahmad S; Chen Y J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840 [TBL] [Abstract][Full Text] [Related]
2. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system. Baradaran-Ghahfarokhi M; Reynoso F; Prusator MT; Sun B; Zhao T J Appl Clin Med Phys; 2020 Feb; 21(2):26-37. PubMed ID: 31898873 [TBL] [Abstract][Full Text] [Related]
4. Spread-out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization. Darafsheh A; Hao Y; Zhao X; Zwart T; Wagner M; Evans T; Reynoso F; Zhao T Med Phys; 2021 Aug; 48(8):4472-4484. PubMed ID: 34077590 [TBL] [Abstract][Full Text] [Related]
5. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
6. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea. Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759 [TBL] [Abstract][Full Text] [Related]
7. Producing a Beam Model of the Varian ProBeam Proton Therapy System using TOPAS Monte Carlo Toolkit. Rahman M; Bruza P; Lin Y; Gladstone DJ; Pogue BW; Zhang R Med Phys; 2020 Dec; 47(12):6500-6508. PubMed ID: 33030241 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of the Dynamic Collimation Monte Carlo simulation package for pencil beam scanning proton therapy. Nelson NP; Culberson WS; Hyer DE; Geoghegan TJ; Patwardhan KA; Smith BR; Flynn RT; Yu J; Rana S; Gutiérrez AN; Hill PM Med Phys; 2021 Jun; 48(6):3172-3185. PubMed ID: 33740253 [TBL] [Abstract][Full Text] [Related]
9. Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit. Prusator MT; Ahmad S; Chen Y J Appl Clin Med Phys; 2018 Mar; 19(2):305-310. PubMed ID: 29468842 [TBL] [Abstract][Full Text] [Related]
10. Simulation of spread-out bragg peaks in proton beams using Geant4/TOPAS. Velten C; Tomé WA Biomed Phys Eng Express; 2020 May; 6(4):047001. PubMed ID: 33444283 [TBL] [Abstract][Full Text] [Related]
11. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Perl J; Shin J; Schumann J; Faddegon B; Paganetti H Med Phys; 2012 Nov; 39(11):6818-37. PubMed ID: 23127075 [TBL] [Abstract][Full Text] [Related]
12. TOPAS Monte Carlo simulation for double scattering proton therapy and dosimetric evaluation. Liu H; Li Z; Slopsema R; Hong L; Pei X; Xu XG Phys Med; 2019 Jun; 62():53-62. PubMed ID: 31153399 [TBL] [Abstract][Full Text] [Related]
13. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code. Verbeek N; Wulff J; Bäumer C; Smyczek S; Timmermann B; Brualla L Med Phys; 2021 Jan; 48(1):456-476. PubMed ID: 33217026 [TBL] [Abstract][Full Text] [Related]
14. MO-F-213AB-02: Correcting Spread-Out Bragg Peak Slope Using Time-Resolved Monte Carlo Simulations and Beam Current Modulation. Hill P; Klein E; Bloch C Med Phys; 2012 Jun; 39(6Part21):3871-3872. PubMed ID: 28518275 [TBL] [Abstract][Full Text] [Related]
15. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy. Schellhammer SM; Gantz S; Lühr A; Oborn BM; Bussmann M; Hoffmann AL Med Phys; 2018 Jul; 45(7):3429-3434. PubMed ID: 29763970 [TBL] [Abstract][Full Text] [Related]
16. Technical Note: An approach to building a Monte Carlo simulation model for a double scattering proton beam system. Yuan J; Ellis R; Machtay M Med Phys; 2018 Jun; 45(6):2660-2666. PubMed ID: 29603753 [TBL] [Abstract][Full Text] [Related]
17. Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning. Fracchiolla F; Lorentini S; Widesott L; Schwarz M Phys Med Biol; 2015 Nov; 60(21):8601-19. PubMed ID: 26501569 [TBL] [Abstract][Full Text] [Related]
18. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Paganetti H; Jiang H; Lee SY; Kooy HM Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464 [TBL] [Abstract][Full Text] [Related]
19. Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study. De Marzi L; Patriarca A; Nauraye C; Hierso E; Dendale R; Guardiola C; Prezado Y Med Phys; 2018 Nov; 45(11):5305-5316. PubMed ID: 30311639 [TBL] [Abstract][Full Text] [Related]
20. Increased flexibility and efficiency of a double-scattering FLASH proton beamline configuration for Hachadorian R; Cascio E; Schuemann J Phys Med Biol; 2023 Jul; 68(15):. PubMed ID: 37369231 [No Abstract] [Full Text] [Related] [Next] [New Search]