These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28444848)

  • 21. Modelling the fear effect in predator-prey interactions.
    Wang X; Zanette L; Zou X
    J Math Biol; 2016 Nov; 73(5):1179-1204. PubMed ID: 27002514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A specific area of olfactory cortex involved in stress hormone responses to predator odours.
    Kondoh K; Lu Z; Ye X; Olson DP; Lowell BB; Buck LB
    Nature; 2016 Apr; 532(7597):103-6. PubMed ID: 27001694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interference competition: odours of an apex predator and conspecifics influence resource acquisition by red foxes.
    Leo V; Reading RP; Letnic M
    Oecologia; 2015 Dec; 179(4):1033-40. PubMed ID: 26296332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Social learning and acquired recognition of a predator by a marine fish.
    Manassa RP; McCormick MI
    Anim Cogn; 2012 Jul; 15(4):559-65. PubMed ID: 22453926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning to distinguish between predators and non-predators: understanding the critical role of diet cues and predator odours in generalisation.
    Mitchell MD; Chivers DP; McCormick MI; Ferrari MC
    Sci Rep; 2015 Sep; 5():13918. PubMed ID: 26358861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased predation risk modifies lizard scent-mark chemicals.
    Aragón P; López P; Martín J
    J Exp Zool A Ecol Genet Physiol; 2008 Aug; 309(7):427-33. PubMed ID: 18512750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting interspecific olfactory communication to monitor predators.
    Garvey PM; Glen AS; Clout MN; Wyse SV; Nichols M; Pech RP
    Ecol Appl; 2017 Mar; 27(2):389-402. PubMed ID: 27983773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch.
    Chivers DP; Mathiron A; Sloychuk JR; Ferrari MC
    Proc Biol Sci; 2015 Jun; 282(1809):20150365. PubMed ID: 26041358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Native reptiles alter their foraging in the presence of the olfactory cues of invasive mammalian predators.
    Webster C; Massaro M; Michael DR; Bambrick D; Riley JL; Nimmo DG
    R Soc Open Sci; 2018 Oct; 5(10):180136. PubMed ID: 30473801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel predators emit novel cues: a mechanism for prey naivety towards alien predators.
    Carthey AJR; Bucknall MP; Wierucka K; Banks PB
    Sci Rep; 2017 Nov; 7(1):16377. PubMed ID: 29180825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of predator neophobia: a meta-analytic review.
    Crane AL; Ferrari MCO
    Proc Biol Sci; 2017 Aug; 284(1861):. PubMed ID: 28835552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.
    Wang X; Zou X
    Bull Math Biol; 2017 Jun; 79(6):1325-1359. PubMed ID: 28508296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles.
    Hettyey A; Tóth Z; Thonhauser KE; Frommen JG; Penn DJ; Van Buskirk J
    Oecologia; 2015 Nov; 179(3):699-710. PubMed ID: 26163350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-traumatic stress disorder: evolutionary perspectives.
    Cantor C
    Aust N Z J Psychiatry; 2009 Nov; 43(11):1038-48. PubMed ID: 20001399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory assessment of predation risk in the aquatic environment.
    Wisenden BD
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1205-8. PubMed ID: 11079399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroendocrine changes upon exposure to predator odors.
    Hegab IM; Wei W
    Physiol Behav; 2014 May; 131():149-55. PubMed ID: 24805977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Damsel in distress: captured damselfish prey emit chemical cues that attract secondary predators and improve escape chances.
    Lönnstedt OM; McCormick MI
    Proc Biol Sci; 2015 Nov; 282(1818):20152038. PubMed ID: 26511043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fossils and phylogeny uncover the evolutionary history of a unique antipredator behaviour.
    Clucas B; Ord TJ; Owings DH
    J Evol Biol; 2010 Oct; 23(10):2197-2211. PubMed ID: 20840310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.
    Chan K; Boutin S; Hossie TJ; Krebs CJ; O'Donoghue M; Murray DL
    Ecology; 2017 Jul; 98(7):1787-1796. PubMed ID: 28369822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infochemical-mediated intraguild interactions among three predatory mites on cassava plants.
    Gnanvossou D; Hanna R; Dicke M
    Oecologia; 2003 Mar; 135(1):84-90. PubMed ID: 12647107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.