BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 28445031)

  • 1. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase.
    Ouedraogo D; Souffrant M; Vasquez S; Hamelberg D; Gadda G
    Biochemistry; 2017 May; 56(19):2477-2487. PubMed ID: 28445031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.
    Gannavaram S; Sirin S; Sherman W; Gadda G
    Biochemistry; 2014 Oct; 53(41):6574-83. PubMed ID: 25243743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.
    Ouedraogo D; Ball J; Iyer A; Reis RAG; Vodovoz M; Gadda G
    Arch Biochem Biophys; 2017 Oct; 632():192-201. PubMed ID: 28625766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by D-arginine dehydrogenase.
    Ball J; Bui QV; Gannavaram S; Gadda G
    Arch Biochem Biophys; 2015 Feb; 568():56-63. PubMed ID: 25637657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase.
    Ouedraogo D; Souffrant M; Yao XQ; Hamelberg D; Gadda G
    Biochemistry; 2023 Mar; 62(5):1070-1081. PubMed ID: 36795942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase.
    Iyer A; Reis RAG; Agniswamy J; Weber IT; Gadda G
    Arch Biochem Biophys; 2022 Jan; 715():109100. PubMed ID: 34864048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single-Point Mutation in d-Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity.
    Iyer A; Reis RAG; Gannavaram S; Momin M; Spring-Connell AM; Orozco-Gonzalez Y; Agniswamy J; Hamelberg D; Weber IT; Gozem S; Wang S; Germann MW; Gadda G
    Biochemistry; 2021 Mar; 60(9):711-724. PubMed ID: 33630571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes and substrate recognition in Pseudomonas aeruginosa D-arginine dehydrogenase.
    Fu G; Yuan H; Li C; Lu CD; Gadda G; Weber IT
    Biochemistry; 2010 Oct; 49(39):8535-45. PubMed ID: 20809650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of
    Quaye JA; Ouedraogo D; Gadda G
    J Agric Food Chem; 2023 Nov; 71(45):17343-52. PubMed ID: 37933126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of amino acid position 71 in substrate preference by meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum IAM14863.
    Zhang Y; Ma Q; Dong M; Zhang X; Chen Y; Gao X; Song Y
    Enzyme Microb Technol; 2018 Apr; 111():57-62. PubMed ID: 29421037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state kinetic mechanism and reductive half-reaction of D-arginine dehydrogenase from Pseudomonas aeruginosa.
    Yuan H; Fu G; Brooks PT; Weber I; Gadda G
    Biochemistry; 2010 Nov; 49(44):9542-50. PubMed ID: 20932054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase.
    Yildiz I
    Chemphyschem; 2023 Oct; 24(20):e202300431. PubMed ID: 37540527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Determinants of N-Acetylglucosamine Recognition and Turnover by N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside Deacetylase (MshB).
    Huang X; Hernick M
    Biochemistry; 2015 Jun; 54(24):3784-90. PubMed ID: 26024468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural evidence for the involvement of the residues Ser187 and Tyr422 in substrate recognition in the 3-methylcrotonyl-coenzyme A carboxylase from Pseudomonas aeruginosa.
    Díaz-Pérez C; Díaz-Pérez AL; Rodríguez-Zavala JS; Campos-García J
    J Biochem; 2013 Sep; 154(3):291-7. PubMed ID: 23760555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Based Engineering of an Artificially Generated NADP
    Hayashi J; Seto T; Akita H; Watanabe M; Hoshino T; Yoneda K; Ohshima T; Sakuraba H
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons.
    Quaye JA; Wood KE; Snelgrove C; Ouedraogo D; Gadda G
    J Biol Chem; 2024 May; 300(6):107381. PubMed ID: 38762175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function analyses of isochorismate-pyruvate lyase from Pseudomonas aeruginosa suggest differing catalytic mechanisms for the two pericyclic reactions of this bifunctional enzyme.
    Luo Q; Olucha J; Lamb AL
    Biochemistry; 2009 Jun; 48(23):5239-45. PubMed ID: 19432488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function.
    Lu X; Li L; Wu R; Feng X; Li Z; Yang H; Wang C; Guo H; Galkin A; Herzberg O; Mariano PS; Martin BM; Dunaway-Mariano D
    Biochemistry; 2006 Jan; 45(4):1162-72. PubMed ID: 16430212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.