These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28445395)

  • 1. A Modified Lamb Wave Time-Reversal Method for Health Monitoring of Composite Structures.
    Zeng L; Lin J; Huang L
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient Lamb wave-based virtual refined time-reversal method for damage localization in plates using broadband measurements.
    Kannusamy M; Kapuria S; Sasmal S
    Ultrasonics; 2022 Aug; 124():106767. PubMed ID: 35653985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude modified sparse imaging for damage detection in quasi-isotropic composite laminates using non-contact laser induced Lamb waves.
    Gao F; Hua J; Zeng L; Lin J
    Ultrasonics; 2019 Mar; 93():122-129. PubMed ID: 30476785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.
    Asamene K; Hudson L; Sundaresan M
    Ultrasonics; 2015 May; 59():86-93. PubMed ID: 25682294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates.
    Wang Y; Guan R; Lu Y
    Ultrasonics; 2017 Sep; 80():87-95. PubMed ID: 28511082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact Damage Detection in Patch-Repaired CFRP Laminates Using Nonlinear Lamb Waves.
    Yin Z; Li C; Tie Y; Duan Y
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.
    Yelve NP; Mitra M; Mujumdar PM; Ramadas C
    Ultrasonics; 2016 Aug; 70():12-7. PubMed ID: 27115575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Inverse Approach of Damage Identification Using Lamb Wave Tomography.
    Liu Y; Zhou S; Ning H; Yan C; Hu N
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead Zirconate Titanate Transducers Embedded in Composite Laminates: The Influence of the Integration Method on Ultrasound Transduction.
    Kergosien N; GavĂ©rina L; Ribay G; Saffar F; BeauchĂȘne P; Mesnil O; Bareille O
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage localization method for plates based on the time reversal of the mode-converted Lamb waves.
    Mori N; Biwa S; Kusaka T
    Ultrasonics; 2019 Jan; 91():19-29. PubMed ID: 30031966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact Damage Detection Using Chirp Ultrasonic Guided Waves for Development of Health Monitoring System for CFRP Mobility Structures.
    Tan L; Saito O; Yu F; Okabe Y; Kondoh T; Tezuka S; Chiba A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of Phase Matching and Phase-Reversal Approaches for Thermal Damage Assessment by Second Harmonic Lamb Waves.
    Li W; Hu S; Deng M
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves.
    Agrahari JK; Kapuria S
    Ultrasonics; 2016 Aug; 70():147-57. PubMed ID: 27176646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time reversal technique for health monitoring of metallic structure using Lamb waves.
    Gangadharan R; Murthy CR; Gopalakrishnan S; Bhat MR
    Ultrasonics; 2009 Dec; 49(8):696-705. PubMed ID: 19539965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging of sub-surface defect in CFRP laminate using A
    Rabbi MS; Teramoto K; Ishibashi H; Roshid MM
    Ultrasonics; 2023 Jan; 127():106849. PubMed ID: 36137467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency Lamb wave mixing for fatigue damage evaluation using phase-reversal approach.
    Zhu H; Ng CT; Kotousov A
    Ultrasonics; 2022 Aug; 124():106768. PubMed ID: 35609440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse of initial stress in carbon fiber reinforced polymer laminates using lamb waves and deep neural network.
    Li X; Liu H; Chen X; Lyu Y; Liu Z
    Ultrasonics; 2023 Jul; 132():107005. PubMed ID: 37043998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites.
    Carboni M; Gianneo A; Giglio M
    Ultrasonics; 2015 Jul; 60():51-64. PubMed ID: 25746761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-Write Piezoelectric Transducers on Carbon-Fiber-Reinforced Polymer Structures for Exciting and Receiving Guided Ultrasonic Waves.
    Philibert M; Chen S; Wong VK; Yao K; Soutis C; Gresil M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2733-2740. PubMed ID: 33852385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A refined Lamb wave reciprocity-based method with enhanced sensitivity for damage detection in composite laminates.
    Du F; Zeng L; Huang L; Rao J
    Ultrasonics; 2023 Jul; 132():106980. PubMed ID: 36898298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.