BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 28445637)

  • 1. Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics.
    Zhou Z; Liu J; Long R; Li L; Guo L; Prezhdo OV
    J Am Chem Soc; 2017 May; 139(19):6707-6717. PubMed ID: 28445637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Charge Carrier Trapping and Recombination in BiVO
    Cheng C; Fang Q; Fernandez-Alberti S; Long R
    J Phys Chem Lett; 2021 Apr; 12(14):3514-3521. PubMed ID: 33793248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite-Titania Nanocomposite Photoanodes.
    Ruoko TP; Kaunisto K; Bärtsch M; Pohjola J; Hiltunen A; Niederberger M; Tkachenko NV; Lemmetyinen H
    J Phys Chem Lett; 2015 Aug; 6(15):2859-64. PubMed ID: 26267170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passivation of Hematite by a Semiconducting Overlayer Reduces Charge Recombination: An Insight from Nonadiabatic Molecular Dynamics.
    Wang H; Zhou Z; Long R; Prezhdo OV
    J Phys Chem Lett; 2023 Feb; 14(4):879-887. PubMed ID: 36661401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy.
    Pei GX; Wijten JHJ; Weckhuysen BM
    Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.
    Gao RT; Zhang J; Nakajima T; He J; Liu X; Zhang X; Wang L; Wu L
    Nat Commun; 2023 May; 14(1):2640. PubMed ID: 37156781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH
    He J; Fang WH; Long R
    Chem Sci; 2019 Nov; 10(43):10079-10088. PubMed ID: 32055362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Charge Recombination in Perovskites by Oxidation State of Halide Vacancy.
    Li W; Sun YY; Li L; Zhou Z; Tang J; Prezhdo OV
    J Am Chem Soc; 2018 Nov; 140(46):15753-15763. PubMed ID: 30362747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Influence of Sulfur Vacancies on Nonradiative Recombination Dynamics in Cu
    Chen Z; Zhang PZ; Zhou Y; Zhang X; Liu X; Hou Z; Tang J; Li W
    J Phys Chem Lett; 2020 Dec; 11(24):10354-10361. PubMed ID: 33232153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias.
    Pendlebury SR; Wang X; Le Formal F; Cornuz M; Kafizas A; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Jul; 136(28):9854-7. PubMed ID: 24950057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH
    Qiao L; Fang WH; Long R
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13347-13353. PubMed ID: 32337808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.
    Long R; Prezhdo OV
    Nano Lett; 2015 Jul; 15(7):4274-81. PubMed ID: 26061416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pb dimerization greatly accelerates charge losses in MAPbI
    Zhang Z; Qiao L; Mora-Perez C; Long R; Prezhdo OV
    J Chem Phys; 2020 Feb; 152(6):064707. PubMed ID: 32061240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur Adatom and Vacancy Accelerate Charge Recombination in MoS
    Li L; Long R; Bertolini T; Prezhdo OV
    Nano Lett; 2017 Dec; 17(12):7962-7967. PubMed ID: 29172545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS
    Wei Y; Li L; Fang W; Long R; Prezhdo OV
    Nano Lett; 2017 Jul; 17(7):4038-4046. PubMed ID: 28586230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis.
    Gajapathy H; Bandaranayake S; Hruska E; Vadakkayil A; Bloom BP; Londo S; McClellan J; Guo J; Russell D; de Groot FMF; Yang F; Waldeck DH; Schultze M; Baker LR
    Chem Sci; 2024 Feb; 15(9):3300-3310. PubMed ID: 38425509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking recombination centers by controlling the charge density of a sulfur vacancy in antimony trisulfide.
    Han X; Zhao Q; Yan X; Meng T; He J
    Phys Chem Chem Phys; 2023 Dec; 25(47):32622-32631. PubMed ID: 38009229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.