These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 28445637)

  • 21. Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation.
    Sarkar R; Habib M; Pal S; Prezhdo OV
    Nanoscale; 2018 Jul; 10(26):12683-12694. PubMed ID: 29946626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charge transfer in FeO: a combined molecular-dynamics and ab initio study.
    Kerisit S; Rosso KM
    J Chem Phys; 2005 Dec; 123(22):224712. PubMed ID: 16375500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of tungsten doping on nonradiative electron-hole recombination in monolayer MoSe
    Yang Y; Tokina MV; Fang WH; Long R; Prezhdo OV
    J Chem Phys; 2020 Oct; 153(15):154701. PubMed ID: 33092357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.
    Barroso M; Mesa CA; Pendlebury SR; Cowan AJ; Hisatomi T; Sivula K; Grätzel M; Klug DR; Durrant JR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15640-5. PubMed ID: 22802673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adiabatic and nonadiabatic charge separation dynamics in graphene oxide quantum dots for overall water splitting.
    Cui P
    Nanotechnology; 2019 Jan; 30(4):045201. PubMed ID: 30457975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting.
    Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation.
    He X; Shang C; Meng Q; Chen Z; Jin M; Shui L; Zhang Y; Zhang Z; Yuan M; Wang X; Kempa K; Zhou G
    Nanotechnology; 2020 Nov; 31(45):455405. PubMed ID: 32348967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the Theoretical and Experimental Control of Defect Chemistry and Electrical and Photoelectrochemical Properties of Hematite Nanostructures.
    Wang J; Perry NH; Guo L; Vayssieres L; Tuller HL
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2031-2041. PubMed ID: 30576103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting.
    Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen Passivated Silicon Grain Boundaries Greatly Reduce Charge Recombination for Improved Silicon/Perovskite Tandem Solar Cell Performance: Time Domain Ab Initio Analysis.
    Wang S; Fang WH; Long R
    J Phys Chem Lett; 2019 May; 10(10):2445-2452. PubMed ID: 31034228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of charge dynamics in dinuclear cobalt phthalocyanine ammonium sulfonate (PDS) modified Ti-Fe
    Zhang K; Wu Q; Ba K; Qiu Q; Yang Y; Lin Y; Wang D; Xie T
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1022-1031. PubMed ID: 37459726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide/Peroxide Chemistry Extends Charge Carriers' Lifetime but Undermines Chemical Stability of CH
    He J; Fang WH; Long R; Prezhdo OV
    J Am Chem Soc; 2019 Apr; 141(14):5798-5807. PubMed ID: 30882215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis.
    Liu J; Prezhdo OV
    J Phys Chem Lett; 2015 Nov; 6(22):4463-9. PubMed ID: 26505613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why Chemical Vapor Deposition Grown MoS
    Li L; Long R; Prezhdo OV
    Nano Lett; 2018 Jun; 18(6):4008-4014. PubMed ID: 29772904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?
    Guo Q; Zhao Q; Crespo-Otero R; Di Tommaso D; Tang J; Dimitrov SD; Titirici MM; Li X; Jorge Sobrido AB
    J Am Chem Soc; 2023 Jan; 145(3):1686-1695. PubMed ID: 36631927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH
    Zhang Z; Long R; Tokina MV; Prezhdo OV
    J Am Chem Soc; 2017 Dec; 139(48):17327-17333. PubMed ID: 29117679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy.
    Pendlebury SR; Barroso M; Cowan AJ; Sivula K; Tang J; Grätzel M; Klug D; Durrant JR
    Chem Commun (Camb); 2011 Jan; 47(2):716-8. PubMed ID: 21072391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charge Separation, Band-Bending, and Recombination in WO
    Corby S; Pastor E; Dong Y; Zheng X; Francàs L; Sachs M; Selim S; Kafizas A; Bakulin AA; Durrant JR
    J Phys Chem Lett; 2019 Sep; 10(18):5395-5401. PubMed ID: 31416313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.