These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28445637)

  • 41. Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets.
    Agrawal S; Lin W; Prezhdo OV; Trivedi DJ
    J Chem Phys; 2020 Aug; 153(5):054701. PubMed ID: 32770911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3.
    Iordanova N; Dupuis M; Rosso KM
    J Chem Phys; 2005 Apr; 122(14):144305. PubMed ID: 15847520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defects are needed for fast photo-induced electron transfer from a nanocrystal to a molecule: time-domain ab initio analysis.
    Long R; English NJ; Prezhdo OV
    J Am Chem Soc; 2013 Dec; 135(50):18892-900. PubMed ID: 24279289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
    Gessner O; Gühr M
    Acc Chem Res; 2016 Jan; 49(1):138-45. PubMed ID: 26641490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS
    Wang S; Luo Q; Fang WH; Long R
    J Phys Chem Lett; 2019 Mar; 10(6):1234-1241. PubMed ID: 30818951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe
    Li L; Carter EA
    J Am Chem Soc; 2019 Jul; 141(26):10451-10461. PubMed ID: 31244193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved Carrier Lifetime in BiVO
    Zhang C; Shi Y; Si Y; Liu M; Guo L; Zhao J; Prezhdo OV
    Nano Lett; 2022 Aug; 22(15):6334-6341. PubMed ID: 35895620
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting.
    Wang L; Zhu J; Liu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite.
    Zhou Z; Long R; Prezhdo OV
    J Am Chem Soc; 2019 Dec; 141(51):20222-20233. PubMed ID: 31791126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical characterization of charge transport in chromia (alpha-Cr2O3).
    Iordanova N; Dupuis M; Rosso KM
    J Chem Phys; 2005 Aug; 123(7):074710. PubMed ID: 16229613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ab initio simulations of water splitting on hematite.
    Seriani N
    J Phys Condens Matter; 2017 Nov; 29(46):463002. PubMed ID: 29057752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Sb
    Annamalai A; Sandström R; Gracia-Espino E; Boulanger N; Boily JF; Mühlbacher I; Shchukarev A; Wågberg T
    ACS Appl Mater Interfaces; 2018 May; 10(19):16467-16473. PubMed ID: 29663796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dopants Control Electron-Hole Recombination at Perovskite-TiO₂ Interfaces: Ab Initio Time-Domain Study.
    Long R; Prezhdo OV
    ACS Nano; 2015 Nov; 9(11):11143-55. PubMed ID: 26456384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes.
    Gurudayal ; Peter LM; Wong LH; Abdi FF
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.