These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 28445900)
1. Central and Peripheral Glucagon Reduces Hyperlipidemia in Rats and Hamsters. Patel V; Joharapurkar A; Kshirsagar S; Patel HM; Pandey D; Patel D; Shah K; Bahekar R; Shah GB; Jain MR Drug Res (Stuttg); 2017 Jun; 67(6):318-326. PubMed ID: 28445900 [TBL] [Abstract][Full Text] [Related]
2. Central administration of coagonist of GLP-1 and glucagon receptors improves dyslipidemia. Patel V; Joharapurkar A; Kshirsagar S; Sutariya B; Patel M; Patel H; Pandey D; Patel D; Bahekar R; Jain M Biomed Pharmacother; 2018 Feb; 98():364-371. PubMed ID: 29275178 [TBL] [Abstract][Full Text] [Related]
3. Balanced Coagonist of GLP-1 and Glucagon Receptors Corrects Dyslipidemia by Improving FGF21 Sensitivity in Hamster Model. Patel V; Joharapurkar A; Kshirsagar S; Patel HM; Pandey D; Patel D; Sutariya B; Patel M; Bahekar R; Jain MR Drug Res (Stuttg); 2017 Dec; 67(12):730-736. PubMed ID: 28898910 [TBL] [Abstract][Full Text] [Related]
4. Central GLP-1 receptor activation improves cholesterol metabolism partially independent of its effect on food intake. Patel V; Joharapurkar AA; Kshirsagar SG; Patel KN; Bahekar R; Shah G; Jain MR Can J Physiol Pharmacol; 2016 Feb; 94(2):161-167. PubMed ID: 26629909 [TBL] [Abstract][Full Text] [Related]
5. Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. Li XY; Zhao ZX; Huang M; Feng R; He CY; Ma C; Luo SH; Fu J; Wen BY; Ren L; Shou JW; Guo F; Chen Y; Gao X; Wang Y; Jiang JD J Transl Med; 2015 Aug; 13():278. PubMed ID: 26310319 [TBL] [Abstract][Full Text] [Related]
6. Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism. Choi WH; Gwon SY; Ahn J; Jung CH; Ha TY Nutr Res; 2013 Jul; 33(7):572-9. PubMed ID: 23827132 [TBL] [Abstract][Full Text] [Related]
7. Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Xu G; Huang X; Qiu L; Wu J; Hu Y Asia Pac J Clin Nutr; 2007; 16 Suppl 1():313-7. PubMed ID: 17392126 [TBL] [Abstract][Full Text] [Related]
8. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition. Patel V; Joharapurkar A; Kshirsagar S; Sutariya B; Patel M; Pandey D; Patel H; Ranvir R; Kadam S; Patel D; Bahekar R; Jain M Chem Biol Interact; 2018 Feb; 282():13-21. PubMed ID: 29325849 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of miR-486 and miR-92a decreases liver and plasma cholesterol levels by modulating lipid-related genes in hyperlipidemic hamsters. Niculescu LS; Simionescu N; Fuior EV; Stancu CS; Carnuta MG; Dulceanu MD; Raileanu M; Dragan E; Sima AV Mol Biol Rep; 2018 Aug; 45(4):497-509. PubMed ID: 29725814 [TBL] [Abstract][Full Text] [Related]
10. Lipid-lowering effects of zerumbone, a natural cyclic sesquiterpene of Zingiber zerumbet Smith, in high-fat diet-induced hyperlipidemic hamsters. Tzeng TF; Lu HJ; Liou SS; Chang CJ; Liu IM Food Chem Toxicol; 2014 Jul; 69():132-9. PubMed ID: 24709573 [TBL] [Abstract][Full Text] [Related]
11. Lipid-lowering effect of cordycepin (3'-deoxyadenosine) from Cordyceps militaris on hyperlipidemic hamsters and rats. Gao J; Lian ZQ; Zhu P; Zhu HB Yao Xue Xue Bao; 2011 Jun; 46(6):669-76. PubMed ID: 21882527 [TBL] [Abstract][Full Text] [Related]
12. Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters. Jayachandran M; Chandrasekaran B; Namasivayam N Mol Cell Biochem; 2015 Jan; 398(1-2):39-53. PubMed ID: 25218494 [TBL] [Abstract][Full Text] [Related]
13. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Kwak YS; Kyung JS; Kim JS; Cho JY; Rhee MH Biol Pharm Bull; 2010; 33(3):468-72. PubMed ID: 20190411 [TBL] [Abstract][Full Text] [Related]
14. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis. Downing LE; Heidker RM; Caiozzi GC; Wong BS; Rodriguez K; Del Rey F; Ricketts ML PLoS One; 2015; 10(10):e0140267. PubMed ID: 26458107 [TBL] [Abstract][Full Text] [Related]
15. Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters. Bilz S; Samuel V; Morino K; Savage D; Choi CS; Shulman GI Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E716-22. PubMed ID: 16291572 [TBL] [Abstract][Full Text] [Related]
16. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. Ramakrishna R; Kumar D; Bhateria M; Gaikwad AN; Bhatta RS J Steroid Biochem Mol Biol; 2017 Apr; 168():110-117. PubMed ID: 28232149 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. Jiang C; Wang Q; Wei Y; Yao N; Wu Z; Ma Y; Lin Z; Zhao M; Che C; Yao X; Zhang J; Yin Z J Ethnopharmacol; 2015 Dec; 176():17-26. PubMed ID: 26477373 [TBL] [Abstract][Full Text] [Related]
18. Anti-hyperlipidemic and insulin sensitizing activities of fenofibrate reduces aortic lipid deposition in hyperlipidemic Golden Syrian hamster. Srivastava RA; He S Mol Cell Biochem; 2010 Dec; 345(1-2):197-206. PubMed ID: 20740305 [TBL] [Abstract][Full Text] [Related]
19. The hepatoprotective effect of the combination use of Fructus Schisandrae with statin--A preclinical evaluation. Wat E; Ng CF; Wong EC; Koon CM; Lau CP; Cheung DW; Fung KP; Lau CB; Leung PC J Ethnopharmacol; 2016 Feb; 178():104-14. PubMed ID: 26666731 [TBL] [Abstract][Full Text] [Related]
20. Effects of theabrownin from pu-erh tea on the metabolism of serum lipids in rats: mechanism of action. Gong J; Peng C; Chen T; Gao B; Zhou H J Food Sci; 2010 Aug; 75(6):H182-9. PubMed ID: 20722930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]