These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 28446020)
1. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing. Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020 [TBL] [Abstract][Full Text] [Related]
2. High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications. Hassan RU; Khalil SM; Khan SA; Ali S; Moon J; Cho DH; Byun D Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297952 [TBL] [Abstract][Full Text] [Related]
3. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Parekh DP; Ladd C; Panich L; Moussa K; Dickey MD Lab Chip; 2016 May; 16(10):1812-20. PubMed ID: 27025537 [TBL] [Abstract][Full Text] [Related]
5. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Cui Z; Han Y; Huang Q; Dong J; Zhu Y Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024 [TBL] [Abstract][Full Text] [Related]
6. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Vespini V; Coppola S; Todino M; Paturzo M; Bianco V; Grilli S; Ferraro P Lab Chip; 2016 Jan; 16(2):326-33. PubMed ID: 26660423 [TBL] [Abstract][Full Text] [Related]
7. Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates. Li Z; Jeong YJ; Hong J; Kwon HJ; Ye H; Wang R; Choi HH; Kong H; Hwang H; Kim SH; Tang X ACS Appl Mater Interfaces; 2022 Feb; 14(5):7073-7081. PubMed ID: 35080374 [TBL] [Abstract][Full Text] [Related]
8. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of Microfluidic Chips Based on an EHD-Assisted Direct Printing Method. Chi X; Zhang X; Li Z; Yuan Z; Zhu L; Zhang F; Yang J Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168871 [TBL] [Abstract][Full Text] [Related]
10. Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing. Kirscht T; Jiang L; Liu F; Jiang X; Marander M; Ortega R; Qin H; Jiang S ACS Appl Mater Interfaces; 2024 Aug; 16(33):44225-44235. PubMed ID: 39079046 [TBL] [Abstract][Full Text] [Related]
11. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning. Phung TH; Oh S; Kwon KS J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021 [TBL] [Abstract][Full Text] [Related]
12. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867 [TBL] [Abstract][Full Text] [Related]
13. Designs and applications of electrohydrodynamic 3D printing. Gao D; Zhou JG Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979 [TBL] [Abstract][Full Text] [Related]
14. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics. Ye D; Ding Y; Duan Y; Su J; Yin Z; Huang YA Small; 2018 May; 14(21):e1703521. PubMed ID: 29473336 [TBL] [Abstract][Full Text] [Related]
15. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics. Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. Kuang X; Chen K; Dunn CK; Wu J; Li VCF; Qi HJ ACS Appl Mater Interfaces; 2018 Feb; 10(8):7381-7388. PubMed ID: 29400445 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices. Alapan Y; Hasan MN; Shen R; Gurkan UA J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530 [TBL] [Abstract][Full Text] [Related]
18. A Microscale 3D Printing Based on the Electric-Field-Driven Jet. Zhang G; Lan H; Qian L; Zhao J; Wang F 3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877 [TBL] [Abstract][Full Text] [Related]
19. Omnidirectional Printing of Soft Elastomer for Liquid-State Stretchable Electronics. Wang J; Yang S; Ding P; Cao X; Zhang Y; Cao S; Zhang K; Kong S; Zhou Y; Wang X; Li D; Kong D ACS Appl Mater Interfaces; 2019 May; 11(20):18590-18598. PubMed ID: 31050403 [TBL] [Abstract][Full Text] [Related]
20. Nanofiber self-consistent additive manufacturing process for 3D microfluidics. Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]