BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28446031)

  • 1. Influences of geometrical and mechanical properties of bone tissues in mandible behaviour - experimental and numerical predictions.
    Ramos A; Nyashin Y; Mesnard M
    Comput Methods Biomech Biomed Engin; 2017 Jul; 20(9):1004-1014. PubMed ID: 28446031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stock alloplastic temporomandibular joint implant can influence the behavior of the opposite native joint: A numerical study.
    Ramos AM; Mesnard M
    J Craniomaxillofac Surg; 2015 Oct; 43(8):1384-91. PubMed ID: 26231883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models.
    Apicella D; Aversa R; Ferro F; Ianniello D; Perillo L; Apicella A
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):150-63. PubMed ID: 20119941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of implant condyle geometry on bone and screw strains in a temporomandibular implant.
    Mesnard M; Ramos A; Simões JA
    J Craniomaxillofac Surg; 2014 Apr; 42(3):194-200. PubMed ID: 23726645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position.
    Bonnet AS; Postaire M; Lipinski P
    Med Eng Phys; 2009 Sep; 31(7):806-15. PubMed ID: 19395303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Christensen vs Biomet Microfixation alloplastic TMJ implant: Are there improvements? A numerical study.
    Ramos A; Mesnard M
    J Craniomaxillofac Surg; 2015 Oct; 43(8):1398-403. PubMed ID: 26300296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical predictions of Biomet(®) alloplastic implant in a cadaveric mandibular ramus.
    Mesnard M; Ramos A
    J Craniomaxillofac Surg; 2016 May; 44(5):608-15. PubMed ID: 27017105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of the influence of material parameters on the mechanical behaviour of a rehabilitated edentulous mandible.
    Favot LM; Berry-Kromer V; Haboussi M; Thiebaud F; Ben Zineb T
    J Dent; 2014 Mar; 42(3):287-97. PubMed ID: 24321295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and finite element study of a human mandible.
    Vollmer D; Meyer U; Joos U; Vègh A; Piffko J
    J Craniomaxillofac Surg; 2000 Apr; 28(2):91-6. PubMed ID: 10958421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study and characterization of the crest module design: A 3D finite element analysis.
    Costa C; Peixinho N; Silva JP; Carvalho S
    J Prosthet Dent; 2015 Jun; 113(6):541-7. PubMed ID: 25794909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models.
    Rayfield EJ
    J Anat; 2011 Jan; 218(1):47-58. PubMed ID: 20846282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical assessment of an intramedullary condylar component versus screw fixation for the condylar component of a hemiarthroplasty alloplastic TMJ replacement system.
    Ramos A; Mesnard M; Relvas C; Completo A; Simões JA
    J Craniomaxillofac Surg; 2014 Mar; 42(2):169-74. PubMed ID: 23684530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of stresses in the maxillary and mandibular dental arches and TMJ articular discs during clenching into maximum intercuspation, anterior and unilateral posterior occlusion.
    Pileicikiene G; Surna A; Barauskas R; Surna R; Basevicius A
    Stomatologija; 2007; 9(4):121-8. PubMed ID: 18303277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study.
    Guan H; van Staden R; Loo YC; Johnson N; Ivanovski S; Meredith N
    Int J Oral Maxillofac Implants; 2009; 24(5):866-76. PubMed ID: 19865627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex-vivo and in vitro validation of an innovative mandibular condyle implant concept.
    Ramos A; Gonzalez-Perez LM; Infante-Cossio P; Mesnard M
    J Craniomaxillofac Surg; 2019 Jan; 47(1):112-119. PubMed ID: 30545800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis.
    McNamara BP; Cristofolini L; Toni A; Taylor D
    Clin Mater; 1994; 17(3):131-40. PubMed ID: 10150600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic analysis of peri-implant strain predictions as influenced by uncertainties in bone properties and occlusal forces.
    Petrie CS; Williams JL
    Clin Oral Implants Res; 2007 Oct; 18(5):611-9. PubMed ID: 17590159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of clinically relevant factors on the immediate biomechanical surrounding for a series of dental implant designs.
    Shunmugasamy VC; Gupta N; Pessoa RS; Janal MN; Coelho PG
    J Biomech Eng; 2011 Mar; 133(3):031005. PubMed ID: 21303181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-element analysis of 3 situations of trauma in the human edentulous mandible.
    Santos LS; Rossi AC; Freire AR; Matoso RI; Caria PH; Prado FB
    J Oral Maxillofac Surg; 2015 Apr; 73(4):683-91. PubMed ID: 25577458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.