These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 28446343)
1. From Short Electrospun Nanofibers to Ultralight Aerogels with Tunable Pore Structure. Deuber F; Adlhart C Chimia (Aarau); 2017 Apr; 71(4):236-240. PubMed ID: 28446343 [TBL] [Abstract][Full Text] [Related]
2. Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency. Deuber F; Mousavi S; Federer L; Hofer M; Adlhart C ACS Appl Mater Interfaces; 2018 Mar; 10(10):9069-9076. PubMed ID: 29481046 [TBL] [Abstract][Full Text] [Related]
3. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Chen Y; Shafiq M; Liu M; Morsi Y; Mo X Bioact Mater; 2020 Dec; 5(4):963-979. PubMed ID: 32671291 [TBL] [Abstract][Full Text] [Related]
4. Aerogels Derived from Polymer Nanofibers and Their Applications. Qian Z; Wang Z; Zhao N; Xu J Macromol Rapid Commun; 2018 Jul; 39(14):e1700724. PubMed ID: 29517823 [TBL] [Abstract][Full Text] [Related]
5. Solvent Vapor Strengthened Polyimide Nanofiber-Based Aerogels with High Resilience and Controllable Porous Structure. Shen Y; Wang L; Liu F; Liu H; Li D; Liu Q; Deng B ACS Appl Mater Interfaces; 2020 Nov; 12(47):53104-53114. PubMed ID: 33176100 [TBL] [Abstract][Full Text] [Related]
6. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279 [TBL] [Abstract][Full Text] [Related]
7. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications. Beachley V; Katsanevakis E; Zhang N; Wen X Adv Healthc Mater; 2013 Feb; 2(2):343-51. PubMed ID: 23184622 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Zhong S; Zhang Y; Lim CT Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623 [TBL] [Abstract][Full Text] [Related]
9. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
10. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
11. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
12. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Sheikh FA; Ju HW; Lee JM; Moon BM; Park HJ; Lee OJ; Kim JH; Kim DK; Park CH Nanomedicine; 2015 Apr; 11(3):681-91. PubMed ID: 25555351 [TBL] [Abstract][Full Text] [Related]
13. Electrospun Porous Nanofibers: Pore-Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Cao X; Chen W; Zhao P; Yang Y; Yu DG Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235934 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic electrospun nanofibers for tissue regeneration. Liao S; Li B; Ma Z; Wei H; Chan C; Ramakrishna S Biomed Mater; 2006 Sep; 1(3):R45-53. PubMed ID: 18458387 [TBL] [Abstract][Full Text] [Related]
15. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Xu T; Miszuk JM; Zhao Y; Sun H; Fong H Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611 [TBL] [Abstract][Full Text] [Related]
16. Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Guimarães A; Martins A; Pinho ED; Faria S; Reis RL; Neves NM Nanomedicine (Lond); 2010 Jun; 5(4):539-54. PubMed ID: 20528450 [TBL] [Abstract][Full Text] [Related]
17. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
18. Nanocontainers in and onto Nanofibers. Jiang S; Lv LP; Landfester K; Crespy D Acc Chem Res; 2016 May; 49(5):816-23. PubMed ID: 27135135 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. Son HY; Ryu JH; Lee H; Nam YS ACS Appl Mater Interfaces; 2013 Jul; 5(13):6381-90. PubMed ID: 23802857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]