BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

849 related articles for article (PubMed ID: 28447205)

  • 1. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia.
    Tokuriki S; Igarashi A; Okuno T; Ohta G; Naiki H; Ohshima Y
    Lung; 2017 Aug; 195(4):469-476. PubMed ID: 28447205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock protein 70 protects the lungs from hyperoxic injury in a neonatal rat model of bronchopulmonary dysplasia.
    Lee CH; Su TC; Lee MS; Hsu CS; Yang RC; Kao JK
    PLoS One; 2023; 18(5):e0285944. PubMed ID: 37200358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model.
    Fujibayashi T; Hashimoto N; Jijiwa M; Hasegawa Y; Kojima T; Ishiguro N
    BMC Pulm Med; 2009 Sep; 9():45. PubMed ID: 19758434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Apoptosis in neonatal rat lung exposed to hyperoxia].
    Li YX; Luo XP; Liao LJ; Liu WJ; Ning Q
    Zhonghua Er Ke Za Zhi; 2005 Aug; 43(8):585-90. PubMed ID: 16191268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.
    Eldredge LC; Treuting PM; Manicone AM; Ziegler SF; Parks WC; McGuire JK
    Am J Respir Cell Mol Biol; 2016 Feb; 54(2):273-83. PubMed ID: 26192732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
    Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K
    Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
    Maturu P; Wei-Liang Y; Androutsopoulos VP; Jiang W; Wang L; Tsatsakis AM; Couroucli XI
    Food Chem Toxicol; 2018 Apr; 114():23-33. PubMed ID: 29432836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.
    Alphonse RS; Vadivel A; Coltan L; Eaton F; Barr AJ; Dyck JR; Thébaud B
    Am J Respir Cell Mol Biol; 2011 Feb; 44(2):146-54. PubMed ID: 20348209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelsolin Attenuates Neonatal Hyperoxia-Induced Inflammatory Responses to Rhinovirus Infection and Preserves Alveolarization.
    Cui TX; Brady AE; Zhang YJ; Fulton CT; Popova AP
    Front Immunol; 2022; 13():792716. PubMed ID: 35173718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.
    Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS
    Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE ROLE OF MITOCHONDRIAL FATTY ACID USE IN NEONATAL LUNG INJURY AND REPAIR.
    Dennery PA; Carr J; Peterson A; Yao H
    Trans Am Clin Climatol Assoc; 2018; 129():195-201. PubMed ID: 30166714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy inducers restore impaired autophagy, reduce apoptosis, and attenuate blunted alveolarization in hyperoxia-exposed newborn rats.
    Zhang D; Wu L; Du Y; Zhu Y; Pan B; Xue X; Fu J
    Pediatr Pulmonol; 2018 Aug; 53(8):1053-1066. PubMed ID: 29893049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia.
    Bao T; Liu X; Hu J; Ma M; Li J; Cao L; Yu B; Cheng H; Zhao S; Tian Z
    Inflammation; 2024 Apr; 47(2):469-482. PubMed ID: 37917328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intratracheal transplantation of mesenchymal stem cells simultaneously attenuates both lung and brain injuries in hyperoxic newborn rats.
    Kim YE; Park WS; Sung DK; Ahn SY; Sung SI; Yoo HS; Chang YS
    Pediatr Res; 2016 Sep; 80(3):415-24. PubMed ID: 27064241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human β-Defensin-2 Improves Hyperoxia-Induced Lung Structural and Functional Injury in Neonatal Rats.
    Sun Y; Chen C; Di T; Yang J; Wang K; Zhu Y; Zhu R; Zhou A; Qian Y
    Med Sci Monit; 2019 Aug; 25():6074-6084. PubMed ID: 31411185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].
    Wang XL; Xue XD
    Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Montelukast on Bronchopulmonary Dysplasia (BPD) and Related Mechanisms.
    Chen X; Zhang X; Pan J
    Med Sci Monit; 2019 Mar; 25():1886-1893. PubMed ID: 30862773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foxm1 regulates resolution of hyperoxic lung injury in newborns.
    Xia H; Ren X; Bolte CS; Ustiyan V; Zhang Y; Shah TA; Kalin TV; Whitsett JA; Kalinichenko VV
    Am J Respir Cell Mol Biol; 2015 May; 52(5):611-21. PubMed ID: 25275225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered small airways in aged mice following neonatal exposure to hyperoxic gas.
    O'Reilly M; Harding R; Sozo F
    Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.