These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28447365)

  • 1. Boosted food web productivity through ocean acidification collapses under warming.
    Goldenberg SU; Nagelkerken I; Ferreira CM; Ullah H; Connell SD
    Glob Chang Biol; 2017 Oct; 23(10):4177-4184. PubMed ID: 28447365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosted nutritional quality of food by CO
    Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD
    Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A triple trophic boost: How carbon emissions indirectly change a marine food chain.
    Doubleday ZA; Nagelkerken I; Coutts MD; Goldenberg SU; Connell SD
    Glob Chang Biol; 2019 Mar; 25(3):978-984. PubMed ID: 30500999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive species interactions strengthen in a high-CO
    Ferreira CM; Connell SD; Goldenberg SU; Nagelkerken I
    Proc Biol Sci; 2021 Jul; 288(1954):20210475. PubMed ID: 34229493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers.
    Vizzini S; Martínez-Crego B; Andolina C; Massa-Gallucci A; Connell SD; Gambi MC
    Sci Rep; 2017 Jun; 7(1):4018. PubMed ID: 28642608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effects on seaweed-sustaining top-down control vary with season.
    Werner FJ; Graiff A; Matthiessen B
    Oecologia; 2016 Mar; 180(3):889-901. PubMed ID: 26566809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification and global warming impair shark hunting behaviour and growth.
    Pistevos JC; Nagelkerken I; Rossi T; Olmos M; Connell SD
    Sci Rep; 2015 Nov; 5():16293. PubMed ID: 26559327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean.
    Ferreira CM; Nagelkerken I; Goldenberg SU; Walden G; Leung JYS; Connell SD
    Sci Total Environ; 2019 Dec; 695():133829. PubMed ID: 31421342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change.
    Nagelkerken I; Goldenberg SU; Ferreira CM; Ullah H; Connell SD
    Science; 2020 Aug; 369(6505):829-832. PubMed ID: 32792395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascading top-down effects of changing oceanic predator abundances.
    Baum JK; Worm B
    J Anim Ecol; 2009 Jul; 78(4):699-714. PubMed ID: 19298616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent responses and trophic interaction strengths of a predatory marine gastropod and rock oyster under ocean warming.
    Tsang HH; Joyce PWS; Falkenberg LJ
    Mar Environ Res; 2024 Oct; 201():106675. PubMed ID: 39146804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food web changes under ocean acidification promote herring larvae survival.
    Sswat M; Stiasny MH; Taucher J; Algueró-Muñiz M; Bach LT; Jutfelt F; Riebesell U; Clemmesen C
    Nat Ecol Evol; 2018 May; 2(5):836-840. PubMed ID: 29556079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean.
    Johansen JL; Pratchett MS; Messmer V; Coker DJ; Tobin AJ; Hoey AS
    Sci Rep; 2015 Sep; 5():13830. PubMed ID: 26345733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2020 Apr; 101(4):e02952. PubMed ID: 31840236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.