These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 28447369)

  • 1. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model.
    Bickelhaupt FM; Houk KN
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10070-10086. PubMed ID: 28447369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities.
    Liu F; Liang Y; Houk KN
    Acc Chem Res; 2017 Sep; 50(9):2297-2308. PubMed ID: 28876890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding chemical reactivity using the activation strain model.
    Vermeeren P; van der Lubbe SCC; Fonseca Guerra C; Bickelhaupt FM; Hamlin TA
    Nat Protoc; 2020 Feb; 15(2):649-667. PubMed ID: 31925400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkene distortion energies and torsional effects control reactivities, and stereoselectivities of azide cycloadditions to norbornene and substituted norbornenes.
    Lopez SA; Houk KN
    J Org Chem; 2013 Mar; 78(5):1778-83. PubMed ID: 22764840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activation strain model of chemical reactivity.
    van Zeist WJ; Bickelhaupt FM
    Org Biomol Chem; 2010 Jul; 8(14):3118-27. PubMed ID: 20490400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity for the Diels-Alder reaction of cumulenes: a distortion-interaction analysis along the reaction pathway.
    Liu S; Lei Y; Qi X; Lan Y
    J Phys Chem A; 2014 Apr; 118(14):2638-45. PubMed ID: 24576078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activation strain model and molecular orbital theory: understanding and designing chemical reactions.
    Fernández I; Bickelhaupt FM
    Chem Soc Rev; 2014 Jul; 43(14):4953-67. PubMed ID: 24699791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion, interaction, and conceptual DFT perspectives of MO4-alkene (M = Os, Re, Tc, Mn) cycloadditions.
    Ess DH
    J Org Chem; 2009 Feb; 74(4):1498-508. PubMed ID: 19140726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity.
    Xu L; Doubleday CE; Houk KN
    J Am Chem Soc; 2010 Mar; 132(9):3029-37. PubMed ID: 20148587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electron-demand dienes: activation barriers and distortion/interaction analysis.
    Liu F; Paton RS; Kim S; Liang Y; Houk KN
    J Am Chem Soc; 2013 Oct; 135(41):15642-9. PubMed ID: 24044412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical reactivity from an activation strain perspective.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chem Commun (Camb); 2021 Jun; 57(48):5880-5896. PubMed ID: 34075969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers.
    Osuna S; Houk KN
    Chemistry; 2009 Dec; 15(47):13219-31. PubMed ID: 19876972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity.
    Barrales-Martínez C; Martínez-Araya JI; Jaque P
    J Phys Chem A; 2021 Jan; 125(3):801-815. PubMed ID: 33448854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling polar Diels-Alder reactions with conceptual DFT analysis and the distortion/interaction model.
    Sarotti AM
    Org Biomol Chem; 2014 Jan; 12(1):187-99. PubMed ID: 24085334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diels-Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions.
    Yang YF; Liang Y; Liu F; Houk KN
    J Am Chem Soc; 2016 Feb; 138(5):1660-7. PubMed ID: 26804318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.