These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28447640)

  • 1. Abrasion-set limits on Himalayan gravel flux.
    Dingle EH; Attal M; Sinclair HD
    Nature; 2017 Apr; 544(7651):471-474. PubMed ID: 28447640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake.
    Fan N; Nie R; Wang Q; Liu X
    Sci Rep; 2016 Nov; 6():37108. PubMed ID: 27857220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sediment supply controls equilibrium channel geometry in gravel rivers.
    Pfeiffer AM; Finnegan NJ; Willenbring JK
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3346-3351. PubMed ID: 28289212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in bar material grain-size and hydraulic conditions of managed and re-naturalized reaches of the gravel-bed Bečva River (Czech Republic).
    Škarpich V; Galia T; Ruman S; Máčka Z
    Sci Total Environ; 2019 Feb; 649():672-685. PubMed ID: 30176478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels.
    Kondolf GM
    Environ Manage; 1997 Jul; 21(4):533-51. PubMed ID: 9175542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-fraction model of initial sediment motion in gravel-Bed rivers.
    Wilcock PR
    Science; 1998 Apr; 280(5362):410-2. PubMed ID: 9545213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers.
    Liro M
    Sci Total Environ; 2019 Feb; 651(Pt 2):2899-2912. PubMed ID: 30463142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations.
    Gan F; He B; Wang T
    PLoS One; 2018; 13(5):e0196657. PubMed ID: 29723279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding hydrogeomorphic and climatic controls on soil erosion and sediment dynamics in large Himalayan basins.
    Swarnkar S; Tripathi S; Sinha R
    Sci Total Environ; 2021 Nov; 795():148972. PubMed ID: 34328944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.
    Li T; He B; Chen Z; Zhang Y; Liang C; Wang R
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12075-84. PubMed ID: 26965277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term dispersion of river gravel in a canyon in the Atacama Desert, Central Andes, deduced from their
    Carretier S; Regard V; Leanni L; Farías M
    Sci Rep; 2019 Nov; 9(1):17763. PubMed ID: 31780673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A geomorphologist's criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians.
    Wyzga B
    Environ Manage; 2001 Sep; 28(3):341-58. PubMed ID: 11531237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of coarse sediment mobility in the Black Canyon of the Gunnison River, Colorado.
    Dubinski IM; Wohl E
    Environ Manage; 2007 Jul; 40(1):147-60. PubMed ID: 17530332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flood inundation mapping and monitoring using SAR data and its impact on Ramganga River in Ganga basin.
    Agnihotri AK; Ohri A; Gaur S; Shivam ; Das N; Mishra S
    Environ Monit Assess; 2019 Nov; 191(12):760. PubMed ID: 31745827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater.
    Liro M; Ruiz-Villanueva V; Mikuś P; Wyżga B; Bladé Castellet E
    Sci Total Environ; 2020 Nov; 744():140555. PubMed ID: 32755769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can lateral mobility be restored along a highly domesticated low-energy gravel-bed river?
    Dépret T; Thommeret N; Piégay H; Gautier E
    J Environ Manage; 2023 Jan; 325(Pt A):116485. PubMed ID: 36257225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release.
    Gainswin BE; House WA; Leadbeater BS; Armitage PD; Patten J
    Sci Total Environ; 2006 May; 360(1-3):142-57. PubMed ID: 16337674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.
    Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F
    Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment.
    Wasson RJ; Juyal N; Jaiswal M; McCulloch M; Sarin MM; Jain V; Srivastava P; Singhvi AK
    J Environ Manage; 2008 Jul; 88(1):53-61. PubMed ID: 17544204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.
    Emelko MB; Stone M; Silins U; Allin D; Collins AL; Williams CH; Martens AM; Bladon KD
    Glob Chang Biol; 2016 Mar; 22(3):1168-84. PubMed ID: 26313547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.