These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 28448034)

  • 1. Using a Fluorescent PCR-capillary Gel Electrophoresis Technique to Genotype CRISPR/Cas9-mediated Knockout Mutants in a High-throughput Format.
    Ramlee MK; Wang J; Cheung AMS; Li S
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis.
    Ramlee MK; Yan T; Cheung AM; Chuah CT; Li S
    Sci Rep; 2015 Oct; 5():15587. PubMed ID: 26498861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9.
    Bauer DE; Canver MC; Orkin SH
    J Vis Exp; 2015 Jan; (95):e52118. PubMed ID: 25549070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion.
    Ge DT; Tipping C; Brodsky MH; Zamore PD
    G3 (Bethesda); 2016 Oct; 6(10):3197-3206. PubMed ID: 27543296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control.
    Mianné J; Codner GF; Caulder A; Fell R; Hutchison M; King R; Stewart ME; Wells S; Teboul L
    Methods; 2017 May; 121-122():68-76. PubMed ID: 28363792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining.
    Geisinger JM; Turan S; Hernandez S; Spector LP; Calos MP
    Nucleic Acids Res; 2016 May; 44(8):e76. PubMed ID: 26762978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene editing in mouse zygotes using the CRISPR/Cas9 system.
    Wefers B; Bashir S; Rossius J; Wurst W; Kühn R
    Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A One-Pot CRISPR/Cas9-Typing PCR for DNA Detection and Genotyping.
    Gao J; Wu L; Yang D; Gong W; Wang J
    J Mol Diagn; 2021 Jan; 23(1):46-60. PubMed ID: 33127524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.