These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28448295)

  • 41. Mitochondrial Dysfunction in Skeletal Muscle Pathologies.
    Abrigo J; Simon F; Cabrera D; Vilos C; Cabello-Verrugio C
    Curr Protein Pept Sci; 2019; 20(6):536-546. PubMed ID: 30947668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression signatures of lncRNAs in skeletal muscles at the early flow phase revealed by microarray in burned rats.
    Haijun Z; Yonghui Y; Jiake C
    Ulus Travma Acil Cerrahi Derg; 2016 May; 22(3):224-32. PubMed ID: 27598585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation.
    Nakazawa H; Ikeda K; Shinozaki S; Kobayashi M; Ikegami Y; Fu M; Nakamura T; Yasuhara S; Yu YM; Martyn JAJ; Tompkins RG; Shimokado K; Yorozu T; Ito H; Inoue S; Kaneki M
    Sci Rep; 2017 Jul; 7(1):6618. PubMed ID: 28747716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Persistence of muscle catabolism after severe burn.
    Hart DW; Wolf SE; Mlcak R; Chinkes DL; Ramzy PI; Obeng MK; Ferrando AA; Wolfe RR; Herndon DN
    Surgery; 2000 Aug; 128(2):312-9. PubMed ID: 10923010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance.
    Cree MG; Aarsland A; Herndon DN; Wolfe RR
    Crit Care Med; 2007 Sep; 35(9 Suppl):S476-83. PubMed ID: 17713396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Skeletal muscle apoptosis after burns is associated with activation of proapoptotic signals.
    Yasuhara S; Perez ME; Kanakubo E; Yasuhara Y; Shin YS; Kaneki M; Fujita T; Martyn JA
    Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1114-21. PubMed ID: 11052967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Muscle wasting in cancer: the role of mitochondria.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):221-5. PubMed ID: 25769061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Skeletal muscle transcriptome is affected by age in severely burned mice.
    Song J; Widen SG; Wolf SE; El Ayadi A
    Sci Rep; 2022 Dec; 12(1):21584. PubMed ID: 36517580
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo rabbit hindquarter model for assessment of regional burn hypermetabolism.
    Xu J; Fei Z; Yu YM; Xu W; Rhodes A; Tompkins RG; Schulz JT
    J Appl Physiol (1985); 2003 Jan; 94(1):135-40. PubMed ID: 12391055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The relationship between skeletal muscle proteolysis and ubiquitin-proteasome proteolytic pathway in burned rats.
    Chai J; Wu Y; Sheng Z
    Burns; 2002 Sep; 28(6):527-33. PubMed ID: 12220909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of Bone Secreted Factors in Burn-Induced Muscle Cachexia.
    Klein GL
    Curr Osteoporos Rep; 2018 Feb; 16(1):26-31. PubMed ID: 29344793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Skeletal muscle aging and mitochondrial dysfunction: an update].
    Faitg J; Reynaud O; Leduc-Gaudet JP; Gouspillou G
    Med Sci (Paris); 2017 Nov; 33(11):955-962. PubMed ID: 29200393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the musculoskeletal system in post-burn hypermetabolism.
    Klein GL
    Metabolism; 2019 Aug; 97():81-86. PubMed ID: 31181216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prevention of Burn-Induced Inflammatory Responses and Muscle Wasting by GTS-21, a Specific Agonist for α7 Nicotinic Acetylcholine Receptors.
    Kashiwagi S; Khan MA; Yasuhara S; Goto T; Kem WR; Tompkins RG; Kaneki M; Martyn JA
    Shock; 2017 Jan; 47(1):61-69. PubMed ID: 27529131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle.
    Nakazawa H; Yamada M; Tanaka T; Kramer J; Yu YM; Fischman AJ; Martyn JA; Tompkins RG; Kaneki M
    PLoS One; 2015; 10(1):e0116633. PubMed ID: 25594415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interferon gamma modulates trauma-induced muscle wasting and immune dysfunction.
    Madihally SV; Toner M; Yarmush ML; Mitchell RN
    Ann Surg; 2002 Nov; 236(5):649-57. PubMed ID: 12409672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle.
    Sugita H; Kaneki M; Sugita M; Yasukawa T; Yasuhara S; Martyn JA
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E585-91. PubMed ID: 15536206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Small Molecular Weight Soybean Protein-Derived Peptides Nutriment Attenuates Rat Burn Injury-Induced Muscle Atrophy by Modulation of Ubiquitin-Proteasome System and Autophagy Signaling Pathway.
    Zhao F; Yu Y; Liu W; Zhang J; Liu X; Liu L; Yin H
    J Agric Food Chem; 2018 Mar; 66(11):2724-2734. PubMed ID: 29493231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ghrelin receptor agonist, GHRP-2, attenuates burn injury-induced MuRF-1 and MAFbx expression and muscle proteolysis in rats.
    Sheriff S; Joshi R; Friend LA; James JH; Balasubramaniam A
    Peptides; 2009 Oct; 30(10):1909-13. PubMed ID: 19577604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal study following burn injury in young rats is associated with skeletal muscle atrophy, inflammation and altered myogenic regulatory factors.
    Quintana HT; Bortolin JA; da Silva NT; Ribeiro FA; Liberti EA; Ribeiro DA; de Oliveira F
    Inflamm Res; 2015 Jan; 64(1):53-62. PubMed ID: 25413930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.