These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28448295)

  • 61. [Clinical study of skeletal muscle proteolysis in severely burned patients with sepsis].
    Chai JK; Shen CA; Sheng ZY
    Zhonghua Yi Xue Za Zhi; 2005 Nov; 85(41):2895-8. PubMed ID: 16324361
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Predictors of muscle protein synthesis after severe pediatric burns.
    Diaz EC; Herndon DN; Lee J; Porter C; Cotter M; Suman OE; Sidossis LS; Børsheim E
    J Trauma Acute Care Surg; 2015 Apr; 78(4):816-22. PubMed ID: 25807408
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy.
    Kuwahara H; Horie T; Ishikawa S; Tsuda C; Kawakami S; Noda Y; Kaneko T; Tahara S; Tachibana T; Okabe M; Melki J; Takano R; Toda T; Morikawa D; Nojiri H; Kurosawa H; Shirasawa T; Shimizu T
    Free Radic Biol Med; 2010 May; 48(9):1252-62. PubMed ID: 20156551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis?
    Servais S; Letexier D; Favier R; Duchamp C; Desplanches D
    Free Radic Biol Med; 2007 Mar; 42(5):627-35. PubMed ID: 17291986
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Advances in the research of the relationship between calpains and post-burn skeletal muscle wasting].
    Ma L; Chai JK
    Zhonghua Shao Shang Za Zhi; 2013 Jun; 29(3):304-7. PubMed ID: 24059960
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The 2015 ESPEN Sir David Cuthbertson lecture: Inflammation as the driving force of muscle wasting in cancer.
    Argilés JM
    Clin Nutr; 2017 Jun; 36(3):798-803. PubMed ID: 27268093
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of early excision and aggressive enteral feeding on hypermetabolism, catabolism, and sepsis after severe burn.
    Hart DW; Wolf SE; Chinkes DL; Beauford RB; Mlcak RP; Heggers JP; Wolfe RR; Herndon DN
    J Trauma; 2003 Apr; 54(4):755-61; discussion 761-4. PubMed ID: 12707540
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy.
    Zang Q; Maass DL; White J; Horton JW
    J Appl Physiol (1985); 2007 Jan; 102(1):103-12. PubMed ID: 16931562
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Human mitochondrial oxidative capacity is acutely impaired after burn trauma.
    Cree MG; Fram RY; Herndon DN; Qian T; Angel C; Green JM; Mlcak R; Aarsland A; Wolfe RR
    Am J Surg; 2008 Aug; 196(2):234-9. PubMed ID: 18639661
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The impact of catecholamines on skeletal muscle following massive burns: Friend or foe?
    Blears E; Ross E; Ogunbileje JO; Porter C; Murton AJ
    Burns; 2021 Jun; 47(4):756-764. PubMed ID: 33568281
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Third-degree hindpaw burn injury induced apoptosis of lumbar spinal cord ventral horn motor neurons and sciatic nerve and muscle atrophy in rats.
    Wu SH; Huang SH; Cheng KI; Chai CY; Yeh JL; Wu TC; Hsu YC; Kwan AL
    Biomed Res Int; 2015; 2015():372819. PubMed ID: 25695065
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Langen RC; Gosker HR; Remels AH; Schols AM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia.
    Ábrigo J; Elorza AA; Riedel CA; Vilos C; Simon F; Cabrera D; Estrada L; Cabello-Verrugio C
    Oxid Med Cell Longev; 2018; 2018():2063179. PubMed ID: 29785242
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mediation of burn-induced hypermetabolism by CRF receptor-2 activity.
    Chance WT; Dayal R; Friend LA; Thomas I; Sheriff S
    Life Sci; 2007 Feb; 80(11):1064-72. PubMed ID: 17222429
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Skeletal muscle proteolysis in aging.
    Combaret L; Dardevet D; Béchet D; Taillandier D; Mosoni L; Attaix D
    Curr Opin Clin Nutr Metab Care; 2009 Jan; 12(1):37-41. PubMed ID: 19057185
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The metabolic effects of thermal injury.
    Tredget EE; Yu YM
    World J Surg; 1992; 16(1):68-79. PubMed ID: 1290269
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.
    Carson JA; Hardee JP; VanderVeen BN
    Semin Cell Dev Biol; 2016 Jun; 54():53-67. PubMed ID: 26593326
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neutrophil signaling alteration: an adverse inflammatory response after burn shock.
    Sayeed MM
    Medicina (B Aires); 1998; 58(4):386-92. PubMed ID: 9816701
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dietary supplementation with ketoacids protects against CKD-induced oxidative damage and mitochondrial dysfunction in skeletal muscle of 5/6 nephrectomised rats.
    Wang D; Wei L; Yang Y; Liu H
    Skelet Muscle; 2018 May; 8(1):18. PubMed ID: 29855350
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice.
    Miyazawa M; Ishii T; Yasuda K; Noda S; Onouchi H; Hartman PS; Ishii N
    J Radiat Res; 2009 Jan; 50(1):73-83. PubMed ID: 19218782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.