These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 28448610)
21. Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. Perillo M; Arnone MI Gen Comp Endocrinol; 2014 Sep; 205():68-79. PubMed ID: 24971803 [TBL] [Abstract][Full Text] [Related]
22. P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Cheers MS; Ettensohn CA Dev Biol; 2005 Jul; 283(2):384-96. PubMed ID: 15935341 [TBL] [Abstract][Full Text] [Related]
23. Sequence, annotation and developmental expression of the sea urchin Ca(2+) -ATPase family. Jayantha Gunaratne H; Vacquier VD Gene; 2007 Aug; 397(1-2):67-75. PubMed ID: 17482382 [TBL] [Abstract][Full Text] [Related]
24. SpHbox7, a new Abd-B class homeobox gene from the sea urchin Strongylocentrotus purpuratus: insights into the evolution of hox gene expression and function. Dobias SL; Zhao AZ; Tan H; Bell JR; Maxson R Dev Dyn; 1996 Dec; 207(4):450-60. PubMed ID: 8950519 [TBL] [Abstract][Full Text] [Related]
25. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Sun Z; Ettensohn CA Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514 [TBL] [Abstract][Full Text] [Related]
26. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Arenas-Mena C; Cameron RA; Davidson EH Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593 [TBL] [Abstract][Full Text] [Related]
27. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo. Wessel GM; Berg L; Adelson DL; Cannon G; McClay DR Dev Biol; 1998 Jan; 193(2):115-26. PubMed ID: 9473317 [TBL] [Abstract][Full Text] [Related]
28. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. Perillo M; Wang YJ; Leach SD; Arnone MI BMC Evol Biol; 2016 May; 16(1):117. PubMed ID: 27230062 [TBL] [Abstract][Full Text] [Related]
29. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. Shashikant T; Khor JM; Ettensohn CA BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892 [TBL] [Abstract][Full Text] [Related]
30. Conserved RNA binding activity of a Yin-Yang 1 homologue in the ova of the purple sea urchin Strongylocentrotus purpuratus. Belak ZR; Ovsenek N; Eskiw CH Sci Rep; 2018 May; 8(1):8061. PubMed ID: 29795182 [TBL] [Abstract][Full Text] [Related]
31. Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus). Meyer E; Manahan DT Biol Bull; 2009 Aug; 217(1):6-24. PubMed ID: 19679719 [TBL] [Abstract][Full Text] [Related]
32. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. Gildor T; Ben-Tabou de-Leon S PLoS Genet; 2015 Jul; 11(7):e1005435. PubMed ID: 26230518 [TBL] [Abstract][Full Text] [Related]
33. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Schrankel CS; Solek CM; Buckley KM; Anderson MK; Rast JP Dev Biol; 2016 Aug; 416(1):149-161. PubMed ID: 27265865 [TBL] [Abstract][Full Text] [Related]
34. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo. Amore G; Davidson EH Dev Biol; 2006 May; 293(2):555-64. PubMed ID: 16574094 [TBL] [Abstract][Full Text] [Related]
35. Cloning and characterization of alphaP integrin in embryos of the sea urchin Strongylocentrotus purpuratus. Susan JM; Just ML; Lennarz WJ Biochem Biophys Res Commun; 2000 Jun; 272(3):929-35. PubMed ID: 10860853 [TBL] [Abstract][Full Text] [Related]
36. Expression of a collagen gene in mesenchyme lineages of the Strongylocentrotus purpuratus embryo. Angerer LM; Chambers SA; Yang Q; Venkatesan M; Angerer RC; Simpson RT Genes Dev; 1988 Feb; 2(2):239-46. PubMed ID: 3360324 [TBL] [Abstract][Full Text] [Related]
37. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
38. Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Ransick A; Davidson EH Dev Biol; 2012 Apr; 364(2):259-67. PubMed ID: 22509525 [TBL] [Abstract][Full Text] [Related]
39. Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity. Coffman JA; Wessels A; DeSchiffart C; Rydlizky K Dev Biol; 2014 Feb; 386(2):302-7. PubMed ID: 24384388 [TBL] [Abstract][Full Text] [Related]
40. Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Hamdoun AM; Cherr GN; Roepke TA; Epel D Dev Biol; 2004 Dec; 276(2):452-62. PubMed ID: 15581878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]