These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28448913)

  • 41. Hydrogeochemical and Isotopic Indicators of Hydraulic Fracturing Flowback Fluids in Shallow Groundwater and Stream Water, derived from Dameigou Shale Gas Extraction in the Northern Qaidam Basin.
    Zheng Z; Zhang H; Chen Z; Li X; Zhu P; Cui X
    Environ Sci Technol; 2017 Jun; 51(11):5889-5898. PubMed ID: 28482653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.
    Khan NA; Engle M; Dungan B; Holguin FO; Xu P; Carroll KC
    Chemosphere; 2016 Apr; 148():126-36. PubMed ID: 26802271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale.
    Barth-Naftilan E; Sohng J; Saiers JE
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6970-6975. PubMed ID: 29915033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Microbial Community and Functional Potential in the Midland Basin Reveal a Community Dominated by Both Thiosulfate and Sulfate-Reducing Microorganisms.
    Tinker K; Lipus D; Gardiner J; Stuckman M; Gulliver D
    Microbiol Spectr; 2022 Aug; 10(4):e0004922. PubMed ID: 35695567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying strontium sources of flowback fluid and groundwater pollution using
    He X; Li P; Shi H; Xiao Y; Guo Y; Zhao H
    Chemosphere; 2022 Nov; 306():135594. PubMed ID: 35803383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing.
    Thurman EM; Ferrer I; Rosenblum J; Linden K; Ryan JN
    J Hazard Mater; 2017 Feb; 323(Pt A):11-17. PubMed ID: 26947804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A rapid method to determine
    Ajemigbitse MA; Cannon FS; Warner NR
    J Environ Radioact; 2020 Sep; 220-221():106300. PubMed ID: 32560888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A rapid change in microbial communities of the shale gas drilling fluid from 3548 m depth to the above-ground storage tank.
    Mu HM; Wan YY; Wu BC; Tian Y; Dong HL; Xian CG; Li Y
    Sci Total Environ; 2021 Aug; 784():147009. PubMed ID: 33901962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of produced water and surrounding surface water in the Permian Basin, the United States.
    Jiang W; Xu X; Hall R; Zhang Y; Carroll KC; Ramos F; Engle MA; Lin L; Wang H; Sayer M; Xu P
    J Hazard Mater; 2022 May; 430():128409. PubMed ID: 35149501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The flux of radionuclides in flowback fluid from shale gas exploitation.
    Almond S; Clancy SA; Davies RJ; Worrall F
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12316-24. PubMed ID: 24938807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flowback verses first-flush: new information on the geochemistry of produced water from mandatory reporting.
    Stringfellow WT; Camarillo MK
    Environ Sci Process Impacts; 2019 Feb; 21(2):370-383. PubMed ID: 30520488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Barium Isotopes Track the Source of Dissolved Solids in Produced Water from the Unconventional Marcellus Shale Gas Play.
    Tieman ZG; Stewart BW; Capo RC; Phan TT; Lopano CL; Hakala JA
    Environ Sci Technol; 2020 Apr; 54(7):4275-4285. PubMed ID: 32142602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play.
    Xiong B; Zydney AL; Kumar M
    Water Res; 2016 Aug; 99():162-170. PubMed ID: 27155988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.
    Brownlow JW; James SC; Yelderman JC
    Ground Water; 2016 Nov; 54(6):781-792. PubMed ID: 27144719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Treatment and recycling of acidic fracturing flowback fluid.
    Chen F; Wang K; Luo M; Bu T; Yuan X; Du G; Wu H
    Environ Technol; 2022 Jun; 43(15):2310-2318. PubMed ID: 33461424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective.
    Folkerts EJ; Goss GG; Blewett TA
    Rev Environ Contam Toxicol; 2021; 254():1-56. PubMed ID: 32318824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of high viscosity fracturing flowback by electrolytic brine-catalyzed oxidation.
    Si S; Gong Z; Yang Y; Liu S; Wang Y; Wang X
    Water Sci Technol; 2020 Nov; 82(10):2168-2177. PubMed ID: 33263593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.
    Li H; Son JH; Carlson KH
    Water Res; 2016 Jan; 88():458-466. PubMed ID: 26519629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydraulic fracturing flowback chemical composition diversity as a factor determining possibilities of its management.
    Fajfer J; Lipińska O; Konieczyńska M
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):16152-16175. PubMed ID: 34643867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.