BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28448953)

  • 1. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.
    Cai K; Zheng X; Du F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.
    Cai K; Su T; Lin S; Zheng R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Applicable Frequency Map for the Amide-I Mode in β-Peptides.
    Cai K; Du F; Zheng X; Liu J; Zheng R; Zhao J; Wang J
    J Phys Chem B; 2016 Feb; 120(6):1069-79. PubMed ID: 26824578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution.
    Cai K; Zheng X; Liu J; Du F; Yan G; Zhuang D; Yan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():391-400. PubMed ID: 31059891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
    Maekawa H; Ge NH
    J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models.
    Grahnen JA; Amunson KE; Kubelka J
    J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional infrared spectroscopy as a probe of the solvent electrostatic field for a twelve residue peptide.
    Wang J; Zhuang W; Mukamel S; Hochstrasser R
    J Phys Chem B; 2008 May; 112(19):5930-7. PubMed ID: 18078331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling.
    Buchanan EG; James WH; Choi SH; Guo L; Gellman SH; Müller CW; Zwier TS
    J Chem Phys; 2012 Sep; 137(9):094301. PubMed ID: 22957563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations.
    Zhao J; Shi J; Wang J
    J Phys Chem B; 2014 Jan; 118(1):94-106. PubMed ID: 24328259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of transferable amide I vibrational frequency maps for peptides.
    Wang L; Middleton CT; Zanni MT; Skinner JL
    J Phys Chem B; 2011 Apr; 115(13):3713-24. PubMed ID: 21405034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling amide-I vibrations of alanine dipeptide in solution by using neural network protocol.
    Fan J; Lan H; Ning W; Zhong R; Chen F; Yan G; Cai K
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120675. PubMed ID: 34890871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy.
    Wang J; Yang F; Shi J; Zhao J
    J Chem Phys; 2015 Nov; 143(18):185102. PubMed ID: 26567687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the amide I bands of small peptides.
    la Cour Jansen T; Dijkstra AG; Watson TM; Hirst JD; Knoester J
    J Chem Phys; 2006 Jul; 125(4):44312. PubMed ID: 16942147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic DFT map for the complete vibrational amide band of NMA.
    Hayashi T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Nov; 109(43):9747-59. PubMed ID: 16833288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.
    Zhao J; Wang J
    J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic polarizable force field for amide groups in polypeptides.
    Schropp B; Wichmann C; Tavan P
    J Phys Chem B; 2010 May; 114(19):6740-50. PubMed ID: 20411916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic frequency shifts in amide I vibrational spectra: direct parameterization against experiment.
    Reppert M; Tokmakoff A
    J Chem Phys; 2013 Apr; 138(13):134116. PubMed ID: 23574217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.