BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28448979)

  • 1. Combination of Correctors Rescues CFTR Transmembrane-Domain Mutants by Mitigating their Interactions with Proteostasis.
    Lopes-Pacheco M; Boinot C; Sabirzhanova I; Rapino D; Cebotaru L
    Cell Physiol Biochem; 2017; 41(6):2194-2210. PubMed ID: 28448979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correctors Rescue CFTR Mutations in Nucleotide-Binding Domain 1 (NBD1) by Modulating Proteostasis.
    Lopes-Pacheco M; Sabirzhanova I; Rapino D; Morales MM; Guggino WB; Cebotaru L
    Chembiochem; 2016 Mar; 17(6):493-505. PubMed ID: 26864378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation.
    Rapino D; Sabirzhanova I; Lopes-Pacheco M; Grover R; Guggino WB; Cebotaru L
    PLoS One; 2015; 10(3):e0119796. PubMed ID: 25799511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correcting the cystic fibrosis disease mutant, A455E CFTR.
    Cebotaru L; Rapino D; Cebotaru V; Guggino WB
    PLoS One; 2014; 9(1):e85183. PubMed ID: 24416359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of Correctors Rescue ΔF508-CFTR by Reducing Its Association with Hsp40 and Hsp27.
    Lopes-Pacheco M; Boinot C; Sabirzhanova I; Morales MM; Guggino WB; Cebotaru L
    J Biol Chem; 2015 Oct; 290(42):25636-45. PubMed ID: 26336106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PEST sequence does not contribute to the stability of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Clarke DM
    BMC Biochem; 2002 Oct; 3():29. PubMed ID: 12361483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystic fibrosis transmembrane regulator missing the first four transmembrane segments increases wild type and DeltaF508 processing.
    Cebotaru L; Vij N; Ciobanu I; Wright J; Flotte T; Guggino WB
    J Biol Chem; 2008 Aug; 283(32):21926-33. PubMed ID: 18508776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants.
    Sun F; Zhang R; Gong X; Geng X; Drain PF; Frizzell RA
    J Biol Chem; 2006 Dec; 281(48):36856-63. PubMed ID: 16954204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine.
    McDonald EF; Meiler J; Plate L
    ACS Chem Biol; 2023 Oct; 18(10):2128-2143. PubMed ID: 37730207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator has an altered structure when its maturation is inhibited.
    Chen EY; Bartlett MC; Clarke DM
    Biochemistry; 2000 Apr; 39(13):3797-803. PubMed ID: 10736180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of CFTR folding defects with correctors that function as pharmacological chaperones.
    Loo TW; Clarke DM
    Methods Mol Biol; 2011; 741():23-37. PubMed ID: 21594776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications.
    Vij N; Fang S; Zeitlin PL
    J Biol Chem; 2006 Jun; 281(25):17369-17378. PubMed ID: 16621797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescue of defective ATP8B1 trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis.
    van der Woerd WL; Wichers CG; Vestergaard AL; Andersen JP; Paulusma CC; Houwen RH; van de Graaf SF
    J Hepatol; 2016 Jun; 64(6):1339-47. PubMed ID: 26879107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets.
    Hanrahan JW; Sato Y; Carlile GW; Jansen G; Young JC; Thomas DY
    Expert Opin Ther Targets; 2019 Aug; 23(8):711-724. PubMed ID: 31169041
    [No Abstract]   [Full Text] [Related]  

  • 18. The CFTR Corrector, VX-809 (Lumacaftor), Rescues ABCA4 Trafficking Mutants: a Potential Treatment for Stargardt Disease.
    Liu Q; Sabirzhanova I; Bergbower EAS; Yanda M; Guggino WG; Cebotaru L
    Cell Physiol Biochem; 2019; 53(2):400-412. PubMed ID: 31403270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.