These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28449411)

  • 1. Spectroscopic Characterization of the Reaction Products between the Criegee Intermediate CH
    Cabezas C; Endo Y
    Chemphyschem; 2017 Jul; 18(14):1860-1863. PubMed ID: 28449411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reactivity of the Criegee intermediate CH
    Cabezas C; Endo Y
    J Chem Phys; 2018 Jan; 148(1):014308. PubMed ID: 29306294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2018 Sep; 20(35):22569-22575. PubMed ID: 30159563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.
    Foreman ES; Kapnas KM; Murray C
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10419-22. PubMed ID: 27440012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jan; 22(2):446-454. PubMed ID: 31746865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.
    Lee EP; Mok DK; Shallcross DE; Percival CJ; Osborn DL; Taatjes CA; Dyke JM
    Chemistry; 2012 Sep; 18(39):12411-23. PubMed ID: 22907644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods.
    Jr-Min Lin J; Chao W
    Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH(3)CHOO through pure rotational transitions.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Jan; 140(1):011101. PubMed ID: 24410212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: Determination of the molecular structure of the simplest Criegee intermediate CH2OO.
    Nakajima M; Endo Y
    J Chem Phys; 2013 Sep; 139(10):101103. PubMed ID: 24050321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization and photochemistry of the Criegee intermediate CF
    Wang L; Wu Z; Lu B; Zeng X
    J Environ Sci (China); 2022 Apr; 114():160-169. PubMed ID: 35459481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform microwave spectroscopy of Criegee intermediates: The conformational behaviour of butyraldehyde oxide.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2019 Mar; 150(10):104301. PubMed ID: 30876361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18059-18064. PubMed ID: 31378795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the conformational behavior of the doubly substituted methyl-ethyl Criegee intermediate by FTMW spectroscopy.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2017 May; 146(17):174304. PubMed ID: 28477595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.
    Chao W; Hsieh JT; Chang CH; Lin JJ
    Science; 2015 Feb; 347(6223):751-4. PubMed ID: 25569112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.