These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28449705)

  • 1. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
    Chartier M; Morency LP; Zylber MI; Najmanovich RJ
    BMC Pharmacol Toxicol; 2017 Apr; 18(1):18. PubMed ID: 28449705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identify drug repurposing candidates by mining the protein data bank.
    Moriaud F; Richard SB; Adcock SA; Chanas-Martin L; Surgand JS; Ben Jelloul M; Delfaud F
    Brief Bioinform; 2011 Jul; 12(4):336-40. PubMed ID: 21768131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case.
    Huang LC; Soysal E; Zheng W; Zhao Z; Xu H; Sun J
    BMC Syst Biol; 2015; 9 Suppl 4(Suppl 4):S2. PubMed ID: 26100720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive prediction of drug-protein interactions and side effects for the human proteome.
    Zhou H; Gao M; Skolnick J
    Sci Rep; 2015 Jun; 5():11090. PubMed ID: 26057345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing.
    Lim H; Poleksic A; Yao Y; Tong H; He D; Zhuang L; Meng P; Xie L
    PLoS Comput Biol; 2016 Oct; 12(10):e1005135. PubMed ID: 27716836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational application of drug promiscuity in medicinal chemistry.
    Mei Y; Yang B
    Future Med Chem; 2018 Aug; 10(15):1835-1851. PubMed ID: 30019924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug ReposER: a web server for predicting similar amino acid arrangements to known drug binding interfaces for potential drug repositioning.
    Ab Ghani NS; Ramlan EI; Firdaus-Raih M
    Nucleic Acids Res; 2019 Jul; 47(W1):W350-W356. PubMed ID: 31106379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IsoMIF Finder: online detection of binding site molecular interaction field similarities.
    Chartier M; Adriansen E; Najmanovich R
    Bioinformatics; 2016 Feb; 32(4):621-3. PubMed ID: 26504139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Binding Site Molecular Interaction Field Similarities.
    Chartier M; Najmanovich R
    J Chem Inf Model; 2015 Aug; 55(8):1600-15. PubMed ID: 26158641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs.
    Naveed H; Hameed US; Harrus D; Bourguet W; Arold ST; Gao X
    Bioinformatics; 2015 Dec; 31(24):3922-9. PubMed ID: 26286808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
    Haupt VJ; Daminelli S; Schroeder M
    PLoS One; 2013; 8(6):e65894. PubMed ID: 23805191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repurposing: far beyond new targets for old drugs.
    Oprea TI; Mestres J
    AAPS J; 2012 Dec; 14(4):759-63. PubMed ID: 22826034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TarPred: a web application for predicting therapeutic and side effect targets of chemical compounds.
    Liu X; Gao Y; Peng J; Xu Y; Wang Y; Zhou N; Xing J; Luo X; Jiang H; Zheng M
    Bioinformatics; 2015 Jun; 31(12):2049-51. PubMed ID: 25686637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions.
    Minai R; Matsuo Y; Onuki H; Hirota H
    Proteins; 2008 Jul; 72(1):367-81. PubMed ID: 18214952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homopharma: a new concept for exploring the molecular binding mechanisms and drug repurposing.
    Chiu YY; Tseng JH; Liu KH; Lin CT; Hsu KC; Yang JM
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S8. PubMed ID: 25521038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance.
    Gupta MN; Alam A; Hasnain SE
    Biochimie; 2020 Aug; 175():50-57. PubMed ID: 32416199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review and comparative assessment of similarity-based methods for prediction of drug-protein interactions in the druggable human proteome.
    Wang C; Kurgan L
    Brief Bioinform; 2019 Nov; 20(6):2066-2087. PubMed ID: 30102367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.