These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 28450016)
1. Peptide selection and antibody generation for the prospective immunorecognition of Cry1Ab16 protein of transgenic maize. Costa J; Marani MM; Grazina L; Villa C; Meira L; Oliveira MBPP; Leite JRSA; Mafra I Food Chem; 2017 Sep; 231():340-347. PubMed ID: 28450016 [TBL] [Abstract][Full Text] [Related]
2. Cry1A(b)16 toxin from Bacillus thuringiensis: Theoretical refinement of three-dimensional structure and prediction of peptides as molecular markers for detection of genetically modified organisms. Plácido A; Coelho A; Abreu Nascimento L; Gomes Vasconcelos A; Fátima Barroso M; Ramos-Jesus J; Costa V; das Chagas Alves Lima F; Delerue-Matos C; Martins Ramos R; Marani MM; Roberto de Souza de Almeida Leite J Proteins; 2017 Jul; 85(7):1248-1257. PubMed ID: 28316108 [TBL] [Abstract][Full Text] [Related]
3. Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2. Jalali SK; Yadavalli L; Ojha R; Kumar P; Sulaikhabeevi SB; Sharma R; Nair R; Kadanur RC; Kamath SP; Komarlingam MS Pest Manag Sci; 2015 Aug; 71(8):1082-90. PubMed ID: 25143318 [TBL] [Abstract][Full Text] [Related]
4. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
5. Pepsin degradation of Cry1A(b) protein purified from genetically modified maize (Zea mays). de Luis R; Lavilla M; Sánchez L; Calvo M; Pérez MD J Agric Food Chem; 2010 Feb; 58(4):2548-53. PubMed ID: 20088594 [TBL] [Abstract][Full Text] [Related]
6. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil. Bernardi D; Salmeron E; Horikoshi RJ; Bernardi O; Dourado PM; Carvalho RA; Martinelli S; Head GP; Omoto C PLoS One; 2015; 10(10):e0140130. PubMed ID: 26473961 [TBL] [Abstract][Full Text] [Related]
7. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events. Santos-Amaya OF; Rodrigues JV; Souza TC; Tavares CS; Campos SO; Guedes RN; Pereira EJ Sci Rep; 2015 Dec; 5():18243. PubMed ID: 26675246 [TBL] [Abstract][Full Text] [Related]
8. Binding of Bacillus thuringiensis Cry1A toxins with brush border membrane vesicles of maize stem borer (Chilo partellus Swinhoe). Sharma P; Nain V; Lakhanpaul S; Kumar PA J Invertebr Pathol; 2011 Feb; 106(2):333-5. PubMed ID: 20831871 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Gómez I; Dean DH; Bravo A; Soberón M Biochemistry; 2003 Sep; 42(35):10482-9. PubMed ID: 12950175 [TBL] [Abstract][Full Text] [Related]
10. Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope. Guerrero GG; Moreno-Fierros L Scand J Immunol; 2007 Dec; 66(6):610-8. PubMed ID: 17949406 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and thermodynamic parameters for heat denaturation of Cry1a(b) protein from transgenic maize (Zea mays). De Luis R; Pérez MD; Sánchez L; Lavilla M; Calvo M J Food Sci; 2008 Aug; 73(6):C447-51. PubMed ID: 19241533 [TBL] [Abstract][Full Text] [Related]
12. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco. Cao Z; Zhang W; Ning X; Wang B; Liu Y; Li QX J Agric Food Chem; 2017 Nov; 65(46):10115-10122. PubMed ID: 29068685 [TBL] [Abstract][Full Text] [Related]
13. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms. Marani MM; Costa J; Mafra I; Oliveira MB; Camperi SA; Leite JR Biopolymers; 2015 Mar; 104(2):91-100. PubMed ID: 25620523 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the cellular immune response induced by Bacillus thuringiensis Cry1A toxins in mice: effect of the hydrophobic motif from diphtheria toxin. Guerrero GG; Russell WM; Moreno-Fierros L Mol Immunol; 2007 Feb; 44(6):1209-17. PubMed ID: 16930715 [TBL] [Abstract][Full Text] [Related]
15. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616 [TBL] [Abstract][Full Text] [Related]
16. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624 [TBL] [Abstract][Full Text] [Related]
17. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. Dong S; Guan L; He K; Yang W; Deng W; Yuan S; Feng J Int J Biol Macromol; 2021 Jul; 183():1346-1351. PubMed ID: 34004200 [TBL] [Abstract][Full Text] [Related]
18. Strategy for amplification and sequencing of insecticidal cry1A genes from Bacillus thuringiensis. Sauka DH; Amadio AF; Zandomeni RO; Benintende GB Antonie Van Leeuwenhoek; 2007 May; 91(4):423-30. PubMed ID: 17096209 [TBL] [Abstract][Full Text] [Related]
19. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Bretschneider A; Heckel DG; Pauchet Y Insect Biochem Mol Biol; 2016 Sep; 76():109-117. PubMed ID: 27456115 [TBL] [Abstract][Full Text] [Related]
20. Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. Bordoni R; Mezzelani A; Consolandi C; Frosini A; Rizzi E; Castiglioni B; Salati C; Marmiroli N; Marchelli R; Rossi Bernardi L; Battaglia C; De Bellis G J Agric Food Chem; 2004 Mar; 52(5):1049-54. PubMed ID: 14995096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]