These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 28450026)
1. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Zhou Y; Zeng L; Liu X; Gui J; Mei X; Fu X; Dong F; Tang J; Zhang L; Yang Z Food Chem; 2017 Sep; 231():78-86. PubMed ID: 28450026 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of Jasmine Lactone in Tea ( Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses. Zeng L; Zhou Y; Fu X; Liao Y; Yuan Y; Jia Y; Dong F; Yang Z J Agric Food Chem; 2018 Apr; 66(15):3899-3909. PubMed ID: 29605993 [TBL] [Abstract][Full Text] [Related]
3. Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea ( Li J; Zeng L; Liao Y; Gu D; Tang J; Yang Z Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818885 [TBL] [Abstract][Full Text] [Related]
4. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process. Zeng L; Zhou Y; Gui J; Fu X; Mei X; Zhen Y; Ye T; Du B; Dong F; Watanabe N; Yang Z J Agric Food Chem; 2016 Jun; 64(24):5011-9. PubMed ID: 27263428 [TBL] [Abstract][Full Text] [Related]
5. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Zeng L; Zhou Y; Fu X; Mei X; Cheng S; Gui J; Dong F; Tang J; Ma S; Yang Z Food Chem; 2017 Dec; 237():488-498. PubMed ID: 28764024 [TBL] [Abstract][Full Text] [Related]
6. Determination of nerolidol in teas using headspace solid phase microextraction-gas chromatography. Ma C; Qu Y; Zhang Y; Qiu B; Wang Y; Chen X Food Chem; 2014; 152():285-90. PubMed ID: 24444938 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis). Liu G; Yang M; Fu J Plant Physiol Biochem; 2020 Oct; 155():650-657. PubMed ID: 32858427 [TBL] [Abstract][Full Text] [Related]
8. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Yang J; Zhou X; Wu S; Gu D; Zeng L; Yang Z Food Res Int; 2021 Apr; 142():110183. PubMed ID: 33773659 [TBL] [Abstract][Full Text] [Related]
9. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Liu GF; Liu JJ; He ZR; Wang FM; Yang H; Yan YF; Gao MJ; Gruber MY; Wan XC; Wei S Plant Cell Environ; 2018 Jan; 41(1):176-186. PubMed ID: 28963730 [TBL] [Abstract][Full Text] [Related]
10. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process? Gui J; Fu X; Zhou Y; Katsuno T; Mei X; Deng R; Xu X; Zhang L; Dong F; Watanabe N; Yang Z J Agric Food Chem; 2015 Aug; 63(31):6905-14. PubMed ID: 26212085 [TBL] [Abstract][Full Text] [Related]
11. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Ma C; Li J; Chen W; Wang W; Qi D; Pang S; Miao A Food Res Int; 2018 Jun; 108():413-422. PubMed ID: 29735074 [TBL] [Abstract][Full Text] [Related]
12. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Mei X; Liu X; Zhou Y; Wang X; Zeng L; Fu X; Li J; Tang J; Dong F; Yang Z Food Chem; 2017 Dec; 237():356-363. PubMed ID: 28764007 [TBL] [Abstract][Full Text] [Related]
13. Enzyme Catalytic Efficiencies and Relative Gene Expression Levels of ( Zhou Y; Deng R; Xu X; Yang Z J Agric Food Chem; 2020 Sep; 68(37):10109-10117. PubMed ID: 32829629 [TBL] [Abstract][Full Text] [Related]
14. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. Zhao M; Zhang N; Gao T; Jin J; Jing T; Wang J; Wu Y; Wan X; Schwab W; Song C New Phytol; 2020 Apr; 226(2):362-372. PubMed ID: 31828806 [TBL] [Abstract][Full Text] [Related]
15. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Zeng L; Watanabe N; Yang Z Crit Rev Food Sci Nutr; 2019; 59(14):2321-2334. PubMed ID: 30277806 [TBL] [Abstract][Full Text] [Related]
16. Elucidation of ( Z)-3-Hexenyl-β-glucopyranoside Enhancement Mechanism under Stresses from the Oolong Tea Manufacturing Process. Zeng L; Wang X; Xiao Y; Gu D; Liao Y; Xu X; Jia Y; Deng R; Song C; Yang Z J Agric Food Chem; 2019 Jun; 67(23):6541-6550. PubMed ID: 31125230 [TBL] [Abstract][Full Text] [Related]
17. Involvement of histone deacetylase CsHDA2 in regulating ( Gu D; Wu S; Yu Z; Zeng L; Qian J; Zhou X; Yang Z Hortic Res; 2022; 9():uhac158. PubMed ID: 36324644 [TBL] [Abstract][Full Text] [Related]
18. Biochemical Pathway of Benzyl Nitrile Derived from l-Phenylalanine in Tea ( Liao Y; Zeng L; Tan H; Cheng S; Dong F; Yang Z J Agric Food Chem; 2020 Feb; 68(5):1397-1404. PubMed ID: 31917559 [TBL] [Abstract][Full Text] [Related]
19. New Insights into Stress-Induced β-Ocimene Biosynthesis in Tea ( Chen S; Xie P; Li Y; Wang X; Liu H; Wang S; Han W; Wu R; Li X; Guan Y; Yang Z; Yu X J Agric Food Chem; 2021 Oct; 69(39):11656-11664. PubMed ID: 34554738 [TBL] [Abstract][Full Text] [Related]
20. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Zeng L; Jin S; Xu YQ; Granato D; Fu YQ; Sun WJ; Yin JF; Xu YQ Crit Rev Food Sci Nutr; 2024; 64(1):76-86. PubMed ID: 35900156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]