BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28450046)

  • 1. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications.
    Hidalgo A; Cruz A; Pérez-Gil J
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1740-1748. PubMed ID: 28450046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier or carrier? Pulmonary surfactant and drug delivery.
    Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):117-27. PubMed ID: 25709061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles.
    Garcia-Mouton C; Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2019 Nov; 144():230-243. PubMed ID: 31560956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring pulmonary surfactant membranes and films at the respiratory surface.
    Echaide M; Autilio C; Arroyo R; Perez-Gil J
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1725-1739. PubMed ID: 28341439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins.
    Guagliardo R; Pérez-Gil J; De Smedt S; Raemdonck K
    J Control Release; 2018 Dec; 291():116-126. PubMed ID: 30321577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants.
    Liu Q; Guan J; Song R; Zhang X; Mao S
    Acta Biomater; 2022 Mar; 140():76-87. PubMed ID: 34843949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.
    Lopez-Rodriguez E; Pérez-Gil J
    Biochim Biophys Acta; 2014 Jun; 1838(6):1568-85. PubMed ID: 24525076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulations of lung surfactant.
    Baoukina S; Tieleman DP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2431-2440. PubMed ID: 26922885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable Drug-Loaded Nanocarriers for Lung Cancer Treatments.
    Yu HP; Aljuffali IA; Fang JY
    Curr Pharm Des; 2017; 23(3):481-494. PubMed ID: 28292243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can nanotechnology hit the spot in aerosol-based drug delivery for lung disorders?
    Joshi N
    Ther Deliv; 2018 Mar; 9(4):233-236. PubMed ID: 29495926
    [No Abstract]   [Full Text] [Related]  

  • 12. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.
    Sachan AK; Harishchandra RK; Bantz C; Maskos M; Reichelt R; Galla HJ
    ACS Nano; 2012 Feb; 6(2):1677-87. PubMed ID: 22288983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of pulmonary surfactant on nanoparticulate drug delivery systems.
    Schleh C; Rothen-Rutishauser B; Kreyling WG
    Eur J Pharm Biopharm; 2011 Apr; 77(3):350-2. PubMed ID: 21195761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-lipid interactions and surface activity in the pulmonary surfactant system.
    Serrano AG; Pérez-Gil J
    Chem Phys Lipids; 2006 Jun; 141(1-2):105-18. PubMed ID: 16600200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels.
    De Backer L; Braeckmans K; Demeester J; De Smedt SC; Raemdonck K
    Nanomedicine (Lond); 2013 Oct; 8(10):1625-38. PubMed ID: 23418856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers.
    Gravel-Tatta L; DeWolf C; Badia A
    Langmuir; 2021 Oct; 37(42):12365-12376. PubMed ID: 34644076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant.
    Bai X; Xu M; Liu S; Hu G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20368-20376. PubMed ID: 29808987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomedicine for respiratory diseases.
    Pison U; Welte T; Giersig M; Groneberg DA
    Eur J Pharmacol; 2006 Mar; 533(1-3):341-50. PubMed ID: 16434033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy.
    Jin Z; Gao Q; Wu K; Ouyang J; Guo W; Liang XJ
    Adv Drug Deliv Rev; 2023 Nov; 202():115111. PubMed ID: 37820982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.