These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28450078)

  • 1. Frontostriatal development and probabilistic reinforcement learning during adolescence.
    DePasque S; Galván A
    Neurobiol Learn Mem; 2017 Sep; 143():1-7. PubMed ID: 28450078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence.
    Davidow JY; Foerde K; Galván A; Shohamy D
    Neuron; 2016 Oct; 92(1):93-99. PubMed ID: 27710793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning.
    Samanez-Larkin GR; Levens SM; Perry LM; Dougherty RF; Knutson B
    J Neurosci; 2012 Apr; 32(15):5333-7. PubMed ID: 22496578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.
    Frank MJ; Claus ED
    Psychol Rev; 2006 Apr; 113(2):300-326. PubMed ID: 16637763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontostriatal activity and connectivity increase during proactive inhibition across adolescence and early adulthood.
    Vink M; Zandbelt BB; Gladwin T; Hillegers M; Hoogendam JM; van den Wildenberg WP; Du Plessis S; Kahn RS
    Hum Brain Mapp; 2014 Sep; 35(9):4415-27. PubMed ID: 24532023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback-related negativity is enhanced in adolescence during a gambling task with and without probabilistic reinforcement learning.
    Martínez-Velázquez ES; Ramos-Loyo J; González-Garrido AA; Sequeira H
    Neuroreport; 2015 Jan; 26(2):45-9. PubMed ID: 25494471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A developmental study of risky decisions on the cake gambling task: age and gender analyses of probability estimation and reward evaluation.
    Van Leijenhorst L; Westenberg PM; Crone EA
    Dev Neuropsychol; 2008; 33(2):179-96. PubMed ID: 18443976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural processing of reward in adolescent rodents.
    Simon NW; Moghaddam B
    Dev Cogn Neurosci; 2015 Feb; 11():145-54. PubMed ID: 25524828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What motivates adolescents? Neural responses to rewards and their influence on adolescents' risk taking, learning, and cognitive control.
    van Duijvenvoorde AC; Peters S; Braams BR; Crone EA
    Neurosci Biobehav Rev; 2016 Nov; 70():135-147. PubMed ID: 27353570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Adolescent Flexibility: Neurodevelopment of Decision-making and Learning in a Risky Context.
    McCormick EM; Telzer EH
    J Cogn Neurosci; 2017 Mar; 29(3):413-423. PubMed ID: 28129057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence.
    Parr AC; Calabro F; Larsen B; Tervo-Clemmens B; Elliot S; Foran W; Olafsson V; Luna B
    Prog Neurobiol; 2021 Jun; 201():101997. PubMed ID: 33667595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral maturation in adolescence: behavioral vulnerability.
    Ernst M; Korelitz KE
    Encephale; 2009 Dec; 35 Suppl 6():S182-9. PubMed ID: 20141770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Computational Development of Reinforcement Learning during Adolescence.
    Palminteri S; Kilford EJ; Coricelli G; Blakemore SJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004953. PubMed ID: 27322574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult age differences in frontostriatal representation of prediction error but not reward outcome.
    Samanez-Larkin GR; Worthy DA; Mata R; McClure SM; Knutson B
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):672-82. PubMed ID: 24853269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk and Rationality in Adolescent Decision Making: Implications for Theory, Practice, and Public Policy.
    Reyna VF; Farley F
    Psychol Sci Public Interest; 2006 Sep; 7(1):1-44. PubMed ID: 26158695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.
    van den Bos W; Cohen MX; Kahnt T; Crone EA
    Cereb Cortex; 2012 Jun; 22(6):1247-55. PubMed ID: 21817091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study.
    Darki F; Klingberg T
    Cereb Cortex; 2015 Jun; 25(6):1587-95. PubMed ID: 24414278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adolescent risky decision-making: neurocognitive development of reward and control regions.
    Van Leijenhorst L; Gunther Moor B; Op de Macks ZA; Rombouts SA; Westenberg PM; Crone EA
    Neuroimage; 2010 May; 51(1):345-55. PubMed ID: 20188198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.