BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28450391)

  • 1. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
    Kussmaul L; Hirst J
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7607-12. PubMed ID: 16682634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model.
    Selivanov VA; Zagubnaya OA; Nartsissov YR; Cascante M
    PLoS One; 2021; 16(8):e0255164. PubMed ID: 34343196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of reactive oxygen species and redox balance in cardiac mitochondria.
    Gauthier LD; Greenstein JL; Cortassa S; O'Rourke B; Winslow RL
    Biophys J; 2013 Aug; 105(4):1045-56. PubMed ID: 23972856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.
    Gusdon AM; Fernandez-Bueno GA; Wohlgemuth S; Fernandez J; Chen J; Mathews CE
    BMC Biochem; 2015 Sep; 16():22. PubMed ID: 26358560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid oxidation drives mitochondrial hydrogen peroxide production by α-ketoglutarate dehydrogenase.
    Grayson C; Faerman B; Koufos O; Mailloux RJ
    J Biol Chem; 2024 Apr; 300(4):107159. PubMed ID: 38479602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding.
    Sorby-Adams A; Prime TA; Miljkovic JL; Prag HA; Krieg T; Murphy MP
    Redox Biol; 2024 Apr; 72():103161. PubMed ID: 38677214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gossypol Inhibits Electron Transport and Stimulates ROS Generation in Yarrowia lipolytica Mitochondria.
    Arinbasarova AY; Medentsev AG; Krupyanko VI
    Open Biochem J; 2012; 6():11-5. PubMed ID: 22481982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled power: how biology manages succinate-driven energy release.
    Mookerjee SA; Gerencser AA; Watson MA; Brand MD
    Biochem Soc Trans; 2021 Dec; 49(6):2929-2939. PubMed ID: 34882231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of thiacalix[4]arene C-1193 for a directed influence on the functional activity of mitochondria and simulation of this process using a Petri nets.
    Danylovych H; Danylovych Y; Chunikhin A; Cherenok S; Kalchenko V; Kosterin S
    BioTechnologia (Pozn); 2024; 105(1):69-81. PubMed ID: 38633893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain.
    Zhang Y; Bharathi SS; Rardin MJ; Lu J; Maringer KV; Sims-Lucas S; Prochownik EV; Gibson BW; Goetzman ES
    J Biol Chem; 2017 Jun; 292(24):10239-10249. PubMed ID: 28458255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH
    Wang Y; Landry AP; Ding H
    J Biol Chem; 2017 Jun; 292(24):10061-10067. PubMed ID: 28461337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains.
    Rekuviene E; Ivanoviene L; Borutaite V; Morkuniene R
    Neurosci Lett; 2017 Jul; 653():45-50. PubMed ID: 28527718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ATP production: dependence on calcium concentration and respiratory state.
    Fink BD; Bai F; Yu L; Sivitz WI
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C146-C153. PubMed ID: 28515085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Giorgio V; Burchell V; Schiavone M; Bassot C; Minervini G; Petronilli V; Argenton F; Forte M; Tosatto S; Lippe G; Bernardi P
    EMBO Rep; 2017 Jul; 18(7):1065-1076. PubMed ID: 28507163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell death induced by mitochondrial complex I inhibition is mediated by Iron Regulatory Protein 1.
    Urrutia PJ; Aguirre P; Tapia V; Carrasco CM; Mena NP; Núñez MT
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2202-2209. PubMed ID: 28502703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis.
    Tian X; He W; Yang R; Liu Y
    J Biomed Sci; 2017 Jun; 24(1):38. PubMed ID: 28619102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and regulation of the mitochondrial permeability transition.
    Giorgio V; Guo L; Bassot C; Petronilli V; Bernardi P
    Cell Calcium; 2018 Mar; 70():56-63. PubMed ID: 28522037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner.
    Meng G; Liu J; Liu S; Song Q; Liu L; Xie L; Han Y; Ji Y
    Br J Pharmacol; 2018 Apr; 175(8):1126-1145. PubMed ID: 28503736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.