BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28450391)

  • 21. Redox signaling in the growth and development of colonial hydroids.
    Blackstone NW
    J Exp Biol; 2003 Feb; 206(Pt 4):651-8. PubMed ID: 12517982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
    Fato R; Bergamini C; Bortolus M; Maniero AL; Leoni S; Ohnishi T; Lenaz G
    Biochim Biophys Acta; 2009 May; 1787(5):384-92. PubMed ID: 19059197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria.
    Mrácek T; Pecinová A; Vrbacký M; Drahota Z; Houstek J
    Arch Biochem Biophys; 2009 Jan; 481(1):30-6. PubMed ID: 18952046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of superoxide-producing sites in isolated brain mitochondria.
    Kudin AP; Bimpong-Buta NY; Vielhaber S; Elger CE; Kunz WS
    J Biol Chem; 2004 Feb; 279(6):4127-35. PubMed ID: 14625276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation.
    Malinska D; Kulawiak B; Kudin AP; Kovacs R; Huchzermeyer C; Kann O; Szewczyk A; Kunz WS
    Biochim Biophys Acta; 2010; 1797(6-7):1163-70. PubMed ID: 20211146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ubiquinone reduction pattern in pigeon heart mitochondria. Identification of three distinct ubiquinone pools.
    Jørgensen BM; Rasmussen HN; Rasmussen UF
    Biochem J; 1985 Aug; 229(3):621-9. PubMed ID: 4052014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant.
    Wen JJ; Garg NJ
    J Bioenerg Biomembr; 2008 Dec; 40(6):587-98. PubMed ID: 19009337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species.
    McLennan HR; Degli Esposti M
    J Bioenerg Biomembr; 2000 Apr; 32(2):153-62. PubMed ID: 11768748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome bc(1) regulates the mitochondrial permeability transition by two distinct pathways.
    Armstrong JS; Yang H; Duan W; Whiteman M
    J Biol Chem; 2004 Nov; 279(48):50420-8. PubMed ID: 15364912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin.
    Petrosillo G; Ruggiero FM; Di Venosa N; Paradies G
    FASEB J; 2003 Apr; 17(6):714-6. PubMed ID: 12586737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of reactive oxygen species by the mitochondrial electron transport chain.
    Liu Y; Fiskum G; Schubert D
    J Neurochem; 2002 Mar; 80(5):780-7. PubMed ID: 11948241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system.
    Halmosi R; Berente Z; Osz E; Toth K; Literati-Nagy P; Sumegi B
    Mol Pharmacol; 2001 Jun; 59(6):1497-505. PubMed ID: 11353811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.