These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28450530)

  • 1. Lessons from the lower airway microbiome in early CF.
    Hoppe JE; Zemanick ET
    Thorax; 2017 Dec; 72(12):1063-1064. PubMed ID: 28450530
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbiome in cystic fibrosis: Shaping polymicrobial interactions for advances in antibiotic therapy.
    Lopes SP; Azevedo NF; Pereira MO
    Crit Rev Microbiol; 2015; 41(3):353-65. PubMed ID: 24645634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The airway microbiota in early cystic fibrosis lung disease.
    Frayman KB; Armstrong DS; Grimwood K; Ranganathan SC
    Pediatr Pulmonol; 2017 Nov; 52(11):1384-1404. PubMed ID: 28815937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation.
    Ribeiro CM; Lubamba BA
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28075361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways.
    Mall M; Bleich M; Greger R; Schreiber R; Kunzelmann K
    J Clin Invest; 1998 Jul; 102(1):15-21. PubMed ID: 9649552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health.
    Madan JC
    Clin Ther; 2016 Apr; 38(4):740-6. PubMed ID: 26973296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis.
    Johnson LG; Olsen JC; Sarkadi B; Moore KL; Swanstrom R; Boucher RC
    Nat Genet; 1992 Sep; 2(1):21-5. PubMed ID: 1284642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of gap junctional communication by a pro-inflammatory cytokine in cystic fibrosis transmembrane conductance regulator-expressing but not cystic fibrosis airway cells.
    Chanson M; Berclaz PY; Scerri I; Dudez T; Wernke-Dollries K; Pizurki L; Pavirani A; Fiedler MA; Suter S
    Am J Pathol; 2001 May; 158(5):1775-84. PubMed ID: 11337375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis: a disease of vulnerability to airway surface dehydration.
    Boucher RC
    Trends Mol Med; 2007 Jun; 13(6):231-40. PubMed ID: 17524805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [CFTR as cAMP-dependent chloride channels and as cAMP-dependent regulator of sodium channels].
    Tohyama M
    Nihon Rinsho; 1996 Feb; 54(2):429-33. PubMed ID: 8838092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The altered gut microbiota in adults with cystic fibrosis.
    Burke DG; Fouhy F; Harrison MJ; Rea MC; Cotter PD; O'Sullivan O; Stanton C; Hill C; Shanahan F; Plant BJ; Ross RP
    BMC Microbiol; 2017 Mar; 17(1):58. PubMed ID: 28279152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator does not affect neutrophil migration across cystic fibrosis airway epithelial monolayers.
    Pizurki L; Morris MA; Chanson M; Solomon M; Pavirani A; Bouchardy I; Suter S
    Am J Pathol; 2000 Apr; 156(4):1407-16. PubMed ID: 10751364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic Fibrosis Airway Microbiome: Overturning the Old, Opening the Way for the New.
    O'Toole GA
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29084859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection.
    Caverly LJ; Zhao J; LiPuma JJ
    Pediatr Pulmonol; 2015 Oct; 50 Suppl 40():S31-8. PubMed ID: 26335953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting Landscape of Airway Infection in Early Cystic Fibrosis.
    Hoppe JE; Sagel SD
    Am J Respir Crit Care Med; 2019 Sep; 200(5):528-529. PubMed ID: 30875233
    [No Abstract]   [Full Text] [Related]  

  • 17. Epithelial Na
    Smith NJ; Solovay CF
    Pharm Pat Anal; 2017 Jul; 6(4):179-188. PubMed ID: 28696180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of a cAMP-stimulated chloride secretion in regenerating poorly differentiated airway epithelial cells by adenovirus-mediated CFTR gene transfer.
    Dupuit F; Chinet T; Zahm JM; Pierrot D; Hinnrasky J; Kaplan H; Bonnet N; Puchelle E
    Hum Gene Ther; 1997 Aug; 8(12):1439-50. PubMed ID: 9287144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis.
    Antigny F; Norez C; Dannhoffer L; Bertrand J; Raveau D; Corbi P; Jayle C; Becq F; Vandebrouck C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):83-90. PubMed ID: 20203293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic airway gland mucus secretion in response to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis.
    Choi JY; Joo NS; Krouse ME; Wu JV; Robbins RC; Ianowski JP; Hanrahan JW; Wine JJ
    J Clin Invest; 2007 Oct; 117(10):3118-27. PubMed ID: 17853942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.