These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28451152)

  • 21. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe
    Liao A; He H; Tang L; Li Y; Zhang J; Chen J; Chen L; Zhang C; Zhou Y; Zou Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10141-10146. PubMed ID: 29498822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting.
    Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S
    Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly self-diffused Sn doping in α-Fe
    Ma H; Mahadik MA; Park JW; Kumar M; Chung HS; Chae WS; Kong GW; Lee HH; Choi SH; Jang JS
    Nanoscale; 2018 Dec; 10(47):22560-22571. PubMed ID: 30480694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting.
    Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J
    ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes.
    Chang X; Wang T; Zhang P; Zhang J; Li A; Gong J
    J Am Chem Soc; 2015 Jul; 137(26):8356-9. PubMed ID: 26091246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin Hematite Photoanode with Gradient Ti Doping.
    Liu P; Wang C; Wang L; Wu X; Zheng L; Yang HG
    Research (Wash D C); 2020; 2020():5473217. PubMed ID: 32181447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation.
    Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual co-catalysts activated hematite nanorods with low turn-on potential and enhanced charge collection for efficient solar water oxidation.
    Maity D; Pal D; Karmakar K; Rakshit R; Khan GG; Mandal K
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35303734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.
    Gao RT; Zhang J; Nakajima T; He J; Liu X; Zhang X; Wang L; Wu L
    Nat Commun; 2023 May; 14(1):2640. PubMed ID: 37156781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.