BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28451238)

  • 1. On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them.
    Gelbwaser-Klimovsky D; Aspuru-Guzik A
    Chem Sci; 2017 Feb; 8(2):1008-1014. PubMed ID: 28451238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems.
    Godin R; Durrant JR
    Chem Soc Rev; 2021 Nov; 50(23):13372-13409. PubMed ID: 34786578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating band edge DOS occupancy statistics associated excited state electron entropy generation to free energy loss and intrinsic
    Huang L
    Phys Chem Chem Phys; 2023 May; 25(20):14334-14347. PubMed ID: 37183635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Thermodynamic Efficiency Limit of Isothermal Solar Fuel Generation from H
    Wang H; Kong H; Wang J; Liu M; Su B; Lundin SB
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor Quantum Dot Sensitized Solar Cells Based on Ferricyanide/Ferrocyanide Redox Electrolyte Reaching an Open Circuit Photovoltage of 0.8 V.
    Evangelista RM; Makuta S; Yonezu S; Andrews J; Tachibana Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13957-65. PubMed ID: 27171789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic View of Proton Activated Electron Transfer in the Reaction Center of Photosynthetic Bacteria.
    Maróti P
    J Phys Chem B; 2019 Jul; 123(26):5463-5473. PubMed ID: 31181159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.
    Zhang P; Yuly JL; Lubner CE; Mulder DW; King PW; Peters JW; Beratan DN
    Acc Chem Res; 2017 Sep; 50(9):2410-2417. PubMed ID: 28876046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent triplet and fluorescence quantum yields of the photosystem II reaction center described in a thermodynamic model.
    Groot ML; Peterman EJ; van Kan PJ; van Stokkum IH; Dekker JP; van Grondelle R
    Biophys J; 1994 Jul; 67(1):318-30. PubMed ID: 7919002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems.
    Mora SJ; Odella E; Moore GF; Gust D; Moore TA; Moore AL
    Acc Chem Res; 2018 Feb; 51(2):445-453. PubMed ID: 29309118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides.
    Woodbury NW; Peloquin JM; Alden RG; Lin X; Lin S; Taguchi AK; Williams JC; Allen JP
    Biochemistry; 1994 Jul; 33(26):8101-12. PubMed ID: 8025116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic reaction center as a quantum heat engine.
    Dorfman KE; Voronine DV; Mukamel S; Scully MO
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2746-51. PubMed ID: 23365138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Limits of Solar Energy Conversion in the Earth System.
    Kleidon A; Miller L; Gans F
    Top Curr Chem; 2016; 371():1-22. PubMed ID: 26003563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid system of semiconductor and photosynthetic protein.
    Kim Y; Shin SA; Lee J; Yang KD; Nam KT
    Nanotechnology; 2014 Aug; 25(34):342001. PubMed ID: 25091409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE THERMODYNAMIC EFFICIENCY (QUANTUM DEMAND) AND DYNAMICS OF PHOTOSYNTHETIC GROWTH.
    John Pirt S
    New Phytol; 1986 Jan; 102(1):3-37. PubMed ID: 33873885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum electrostatic investigations of charge transfer processes in biological molecules using a microstate description.
    Bombarda E; Ullmann GM
    Faraday Discuss; 2011; 148():173-93; discussion 207-28. PubMed ID: 21322484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.
    Nganou C; Lackner G; Teschome B; Deen MJ; Adir N; Pouhe D; Lupascu DC; Mkandawire M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19030-19039. PubMed ID: 28497947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.
    Dau H; Zaharieva I
    Acc Chem Res; 2009 Dec; 42(12):1861-70. PubMed ID: 19908828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional entropy decay and the third law of thermodynamics.
    Wang CY; Zong XM; Zhang H; Yi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022126. PubMed ID: 25215708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.