These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28451284)
1. Cryptic post-transition state bifurcations that reduce the efficiency of lactone-forming Rh-carbenoid C-H insertions. Hare SR; Tantillo DJ Chem Sci; 2017 Feb; 8(2):1442-1449. PubMed ID: 28451284 [TBL] [Abstract][Full Text] [Related]
2. C-H Insertion in Dirhodium Tetracarboxylate-Catalyzed Reactions despite Dynamical Tendencies toward Fragmentation: Implications for Reaction Efficiency and Catalyst Design. Guo W; Hare SR; Chen SS; Saunders CM; Tantillo DJ J Am Chem Soc; 2022 Sep; 144(37):17219-17231. PubMed ID: 36098581 [TBL] [Abstract][Full Text] [Related]
3. Construction of Two-Dimensional Potential Energy Surfaces of Reactions with Post-Transition-State Bifurcations. Chuang HH; Tantillo DJ; Hsu CP J Chem Theory Comput; 2020 Jul; 16(7):4050-4060. PubMed ID: 32470303 [TBL] [Abstract][Full Text] [Related]
4. Rhodium-Catalyzed Stereospecific C-H Amination for the Construction of Spiroaminal Cores: Reactivity Difference between Nitrenoid and Carbenoid Species against Amide Functionality. Kono M; Harada S; Nemoto T Chemistry; 2017 Jun; 23(31):7428-7432. PubMed ID: 28379626 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic insights into the rhodium-catalyzed intramolecular ketone hydroacylation. Shen Z; Dornan PK; Khan HA; Woo TK; Dong VM J Am Chem Soc; 2009 Jan; 131(3):1077-91. PubMed ID: 19128061 [TBL] [Abstract][Full Text] [Related]
6. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. Shin K; Kim H; Chang S Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998 [TBL] [Abstract][Full Text] [Related]
7. Bifurcations on potential energy surfaces of organic reactions. Ess DH; Wheeler SE; Iafe RG; Xu L; Celebi-Olçüm N; Houk KN Angew Chem Int Ed Engl; 2008; 47(40):7592-601. PubMed ID: 18767086 [TBL] [Abstract][Full Text] [Related]
8. Rh(II)-Catalyzed Reaction Of Some alpha',alpha'- and beta'-Branched-O-Alkyl alpha-(Alkoxycarbonyl)-alpha-diazoacetates. Wee AG; Yu Q J Org Chem; 1997 May; 62(10):3324-3331. PubMed ID: 11671719 [TBL] [Abstract][Full Text] [Related]
9. Anomalous intramolecular C-H insertion reactions of rhodium carbenoids: factors influencing the reaction course and mechanistic implications. Clark JS; Dossetter AG; Wong YS; Townsend RJ; Whittingham WG; Russell CA J Org Chem; 2004 May; 69(11):3886-98. PubMed ID: 15153022 [TBL] [Abstract][Full Text] [Related]
10. Why is copper(I) complex more competent than dirhodium(II) complex in catalytic asymmetric O-H insertion reactions? A computational study of the metal carbenoid O-H insertion into water. Liang Y; Zhou H; Yu ZX J Am Chem Soc; 2009 Dec; 131(49):17783-5. PubMed ID: 19924864 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Qi X; Li Y; Bai R; Lan Y Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396 [TBL] [Abstract][Full Text] [Related]
13. Conjugate addition vs Heck reaction: a theoretical study on competitive coupling catalyzed by isoelectronic metal (Pd(II) and Rh(I)). Peng Q; Yan H; Zhang X; Wu YD J Org Chem; 2012 Sep; 77(17):7487-96. PubMed ID: 22876853 [TBL] [Abstract][Full Text] [Related]
14. Catalytic asymmetric benzylic C-H activation by means of carbenoid-induced C-H insertions. Davies HM; Jin Q; Ren P; Kovalevsky AY J Org Chem; 2002 Jun; 67(12):4165-9. PubMed ID: 12054951 [TBL] [Abstract][Full Text] [Related]
15. Carbon-carbon bond activation of 2,2,6,6-tetramethyl-piperidine-1-oxyl by a Rh(II) metalloradical: a combined experimental and theoretical study. Chan KS; Li XZ; Dzik WI; de Bruin B J Am Chem Soc; 2008 Feb; 130(6):2051-61. PubMed ID: 18205361 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Sampling for Free Energy Profiles with Post-Transition-State Bifurcations. Nam J; Jung Y J Chem Theory Comput; 2023 May; 19(10):2735-2743. PubMed ID: 37067415 [TBL] [Abstract][Full Text] [Related]
17. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes. Archambeau A; Miege F; Meyer C; Cossy J Acc Chem Res; 2015 Apr; 48(4):1021-31. PubMed ID: 25763601 [TBL] [Abstract][Full Text] [Related]
18. Transition-metal-catalyzed group transfer reactions for selective C-H bond functionalization of artemisinin. Liu Y; Xiao W; Wong MK; Che CM Org Lett; 2007 Oct; 9(21):4107-10. PubMed ID: 17880226 [TBL] [Abstract][Full Text] [Related]
19. Computational studies of the relative rates for migratory insertions of alkenes into square-planar, methyl, -amido, and -hydroxo complexes of rhodium. Tye JW; Hartwig JF J Am Chem Soc; 2009 Oct; 131(41):14703-12. PubMed ID: 19778020 [TBL] [Abstract][Full Text] [Related]
20. Dynamical Effects along the Bifurcation Pathway Control Semibullvalene Formation in Deazetization Reactions. Mandal N; Datta A J Phys Chem B; 2018 Jan; 122(3):1239-1244. PubMed ID: 29316395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]