These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Development of updated RfD and RfC values for medium carbon range aromatic and aliphatic total petroleum hydrocarbon fractions. Thompson CM; Bhat VS; Brorby GP; Haws LC J Air Waste Manag Assoc; 2021 Dec; 71(12):1555-1567. PubMed ID: 34469276 [TBL] [Abstract][Full Text] [Related]
3. Visualization and identification of single meteoritic organic molecules by atomic force microscopy. Kaiser K; Schulz F; Maillard JF; Hermann F; Pozo I; Peña D; Cleaves HJ; Burton AS; Danger G; Afonso C; Sandford S; Gross L Meteorit Planet Sci; 2022 Mar; 57(3):644-656. PubMed ID: 35912284 [TBL] [Abstract][Full Text] [Related]
4. Hydrocarbon pollution in the waters and sediments of the Kerch Strait. Nemirovskaya IA; Zavialov PO; Khramtsova AV Mar Pollut Bull; 2022 Jul; 180():113760. PubMed ID: 35635879 [TBL] [Abstract][Full Text] [Related]
5. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
6. Co-treatment of an oily sludge and aged contaminated soil: permanganate oxidation followed by bioremediation. Mora VC; Morelli IS; Rosso JA J Environ Manage; 2020 May; 261():110169. PubMed ID: 32148261 [TBL] [Abstract][Full Text] [Related]
7. Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Shiotari A; Nakae T; Iwata K; Mori S; Okujima T; Uno H; Sakaguchi H; Sugimoto Y Nat Commun; 2017 Jul; 8():16089. PubMed ID: 28726802 [TBL] [Abstract][Full Text] [Related]
8. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Schuler B; Meyer G; Peña D; Mullins OC; Gross L J Am Chem Soc; 2015 Aug; 137(31):9870-6. PubMed ID: 26170086 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Hernández-López EL; Perezgasga L; Huerta-Saquero A; Mouriño-Pérez R; Vazquez-Duhalt R Environ Sci Pollut Res Int; 2016 Jun; 23(11):10773-10784. PubMed ID: 26893177 [TBL] [Abstract][Full Text] [Related]
10. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments from the Eastern Aegean: assessment and source recognition of petroleum hydrocarbons. Gonul LT; Kucuksezgin F Environ Sci Pollut Res Int; 2012 Jan; 19(1):31-41. PubMed ID: 21647694 [TBL] [Abstract][Full Text] [Related]
11. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds. Cataldo F; Angelini G; García-Hernández DA; Manchado A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():68-79. PubMed ID: 23603577 [TBL] [Abstract][Full Text] [Related]
12. A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management. Park IS; Park JW J Hazard Mater; 2010 Jul; 179(1-3):1128-35. PubMed ID: 20456864 [TBL] [Abstract][Full Text] [Related]
13. Identification of recalcitrant hydrocarbons present in a drilling waste-polluted soil. Arce-Ortega JM; Rojas-Avelizapa NG; Rodríguez-Vázquez R J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(6):1535-45. PubMed ID: 15244335 [TBL] [Abstract][Full Text] [Related]
14. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. Podgorski DC; Zito P; Kellerman AM; Bekins BA; Cozzarelli IM; Smith DF; Cao X; Schmidt-Rohr K; Wagner S; Stubbins A; Spencer RGM J Hazard Mater; 2021 Jan; 402():123998. PubMed ID: 33254831 [TBL] [Abstract][Full Text] [Related]
15. In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. Luo YS; Ferguson KC; Rusyn I; Chiu WA Toxicol Sci; 2020 Apr; 174(2):168-177. PubMed ID: 32040194 [TBL] [Abstract][Full Text] [Related]
16. Bond-order discrimination by atomic force microscopy. Gross L; Mohn F; Moll N; Schuler B; Criado A; Guitián E; Peña D; Gourdon A; Meyer G Science; 2012 Sep; 337(6100):1326-9. PubMed ID: 22984067 [TBL] [Abstract][Full Text] [Related]
17. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons. El Nemr A; El-Sadaawy MM; Khaled A; Draz SO Environ Monit Assess; 2013 Jun; 185(6):4571-89. PubMed ID: 23054267 [TBL] [Abstract][Full Text] [Related]
18. Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. Nzila A Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30544637 [TBL] [Abstract][Full Text] [Related]
19. Validation of the narcosis target lipid model for petroleum products: gasoline as a case study. McGrath JA; Parkerton TF; Hellweger FL; Di Toro DM Environ Toxicol Chem; 2005 Sep; 24(9):2382-94. PubMed ID: 16193769 [TBL] [Abstract][Full Text] [Related]
20. Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Wang M; Wang C; Hu X; Zhang H; He S; Lv S Mar Pollut Bull; 2015 Jan; 90(1-2):88-94. PubMed ID: 25499964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]