These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28451347)

  • 1. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer.
    Zhang J; Zhang L; Wang W; Han L; Jia JC; Tian ZW; Tian ZQ; Zhan D
    Chem Sci; 2017 Mar; 8(3):2407-2412. PubMed ID: 28451347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectric effect accelerated electrochemical corrosion and nanoimprint processes on gallium arsenide wafers.
    Guo C; Zhang L; Sartin MM; Han L; Tian ZW; Tian ZQ; Zhan D
    Chem Sci; 2019 Jun; 10(23):5893-5897. PubMed ID: 31360393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching.
    Zhang J; Zhang L; Han L; Tian ZW; Tian ZQ; Zhan D
    Nanoscale; 2017 Jun; 9(22):7476-7482. PubMed ID: 28530294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic-Assisted Electrochemical Nanoimprint Lithography: Forcing Mass Transfer to Enhance the Localized Etching Rate of GaAs.
    Liu B; Han L; Xu H; Su JJ; Zhan D
    Chem Asian J; 2023 Sep; 18(18):e202300491. PubMed ID: 37493590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodic Imprint Lithography: Direct Imprinting of Single Crystalline GaAs with Anodic Stamp.
    Kim K; Ki B; Choi K; Oh J
    ACS Nano; 2019 Nov; 13(11):13465-13473. PubMed ID: 31593424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Assisted Electrochemical Nanoimprinting of Porous and Solid Silicon Wafers.
    Sharstniou A; Niauzorau S; Junghare A; Azeredo BP
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodically Induced Chemical Etching of GaAs Wafers for a GaAs Nanowire-Based Flexible Terahertz Wave Emitter.
    Shin JH; Rhu H; Ji YB; Oh SJ; Lee W
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50703-50712. PubMed ID: 33125230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Suspended III-V Nanofoils by Inverse Metal-Assisted Chemical Etching of In
    Wilhelm TS; Soule CW; Baboli MA; O'Connell CJ; Mohseni PK
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2058-2066. PubMed ID: 29303241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction.
    Sun Y; Ren Y; Haeffner DR; Almer JD; Wang L; Yang W; Truong TT
    Nano Lett; 2010 Sep; 10(9):3747-53. PubMed ID: 20681550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resist-Free Direct Stamp Imprinting of GaAs via Metal-Assisted Chemical Etching.
    Kim K; Ki B; Choi K; Lee S; Oh J
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13574-13580. PubMed ID: 30784266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polarizable molecular dynamics method for electrode-electrolyte interfacial electron transfer under the constant chemical-potential-difference condition on the electrode electrons.
    Takahashi K; Nakano H; Sato H
    J Chem Phys; 2020 Aug; 153(5):054126. PubMed ID: 32770929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Interfacial Dipoles on the Metal-Double Interlayers-Semiconductor Structure and Their Application in Contact Resistivity Reduction.
    Kim SW; Kim SH; Kim GS; Choi C; Choi R; Yu HY
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35614-35620. PubMed ID: 27966860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical buckling microfabrication.
    Zhang J; Dong BY; Jia J; Han L; Wang F; Liu C; Tian ZQ; Tian ZW; Wang D; Zhan D
    Chem Sci; 2016 Jan; 7(1):697-701. PubMed ID: 28791112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Evolution of the Built-in Field at Junctions of GaAs.
    Chen X; Pekarek RT; Gu J; Zakutayev A; Hurst KE; Neale NR; Yang Y; Beard MC
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40339-40346. PubMed ID: 32810402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence.
    Peczonczyk SL; Mukherjee J; Carim AI; Maldonado S
    Langmuir; 2012 Mar; 28(10):4672-82. PubMed ID: 22372474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflective GaN Nanoridge Texturing by Metal-Assisted Chemical Etching via a Thermally Dewetted Pt Catalyst Network for Highly Responsive Ultraviolet Photodiodes.
    Liao Y; Kim YJ; Lai J; Seo JH; Kim M
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13343-13352. PubMed ID: 36880165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Patterning of Si by Contact Etching With Nanoporous Metals.
    Bastide S; Torralba E; Halbwax M; Le Gall S; Mpogui E; Cachet-Vivier C; Magnin V; Harari J; Yarekha D; Vilcot JP
    Front Chem; 2019; 7():256. PubMed ID: 31106193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions.
    Wang X; Sun X; Cui S; Yang Q; Zhai T; Zhao J; Deng J; Ruotolo A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.
    Torrance KW; Keenan HE; Hursthouse AS; Stirling D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):471-5. PubMed ID: 20390892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.