These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 28451736)

  • 41. Getting a grip: different actions and visual guidance of the thumb and finger in precision grasping.
    Melmoth DR; Grant S
    Exp Brain Res; 2012 Oct; 222(3):265-76. PubMed ID: 22899313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Does the central nervous system learn to plan bimanual movements based on its expectation of availability of visual feedback?
    Srinivasan D; Martin BJ
    Hum Mov Sci; 2012 Dec; 31(6):1409-24. PubMed ID: 22742721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors affecting higher-order movement planning: a kinematic analysis of human prehension.
    Jakobson LS; Goodale MA
    Exp Brain Res; 1991; 86(1):199-208. PubMed ID: 1756790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Role of Visual and Haptic Feedback During Dynamically Coupled Bimanual Manipulation.
    Contu S; Hughes CM; Masia L
    IEEE Trans Haptics; 2016; 9(4):536-547. PubMed ID: 27655023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Saccadic eye movements in a high-speed bimanual stacking task: changes of attentional control during learning and automatization.
    Foerster RM; Carbone E; Koesling H; Schneider WX
    J Vis; 2011 Jun; 11(7):9. PubMed ID: 21665985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Center or side: biases in selecting grasp points on small bars.
    Paulun VC; Kleinholdermann U; Gegenfurtner KR; Smeets JB; Brenner E
    Exp Brain Res; 2014 Jul; 232(7):2061-72. PubMed ID: 24639066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Grasping tools: effects of task and apraxia.
    Randerath J; Li Y; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2009 Jan; 47(2):497-505. PubMed ID: 18977235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Left handedness does not extend to visually guided precision grasping.
    Gonzalez CL; Whitwell RL; Morrissey B; Ganel T; Goodale MA
    Exp Brain Res; 2007 Sep; 182(2):275-9. PubMed ID: 17717653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Task requirements influence sensory integration during grasping in humans.
    Säfström D; Edin BB
    Learn Mem; 2004; 11(3):356-63. PubMed ID: 15169866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination.
    Le A; Vesia M; Yan X; Crawford JD; Niemeier M
    J Neurophysiol; 2017 Feb; 117(2):624-636. PubMed ID: 27832593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension.
    Whitwell RL; Lambert LM; Goodale MA
    Exp Brain Res; 2008 Jul; 188(4):603-11. PubMed ID: 18443765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visual cues, expectations, and sensorimotor memories in the prediction and perception of object dynamics during manipulation.
    Schneider TR; Buckingham G; Hermsdörfer J
    Exp Brain Res; 2020 Feb; 238(2):395-409. PubMed ID: 31932867
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Within grasp but out of reach: evidence for a double dissociation between imagined hand and arm movements in the left cerebral hemisphere.
    Johnson SH; Corballis PM; Gazzaniga MS
    Neuropsychologia; 2001; 39(1):36-50. PubMed ID: 11115654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand.
    Mostafa AA; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jun; 232(6):1639-51. PubMed ID: 24468724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Goal-directed grasping: the dimensional properties of an object influence the nature of the visual information mediating aperture shaping.
    Holmes SA; Heath M
    Brain Cogn; 2013 Jun; 82(1):18-24. PubMed ID: 23501700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation of pointing and visual localization in depth around the natural grasping distance.
    Wiesing M; Kartashova T; Zimmermann E
    J Neurophysiol; 2021 Jun; 125(6):2206-2218. PubMed ID: 33949885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements.
    Flindall JW; Gonzalez CL
    J Neurophysiol; 2016 Nov; 116(5):2105-2113. PubMed ID: 27512020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Precision grasps of children and young and old adults: individual differences in digit contact strategy, purchase pattern, and digit posture.
    Wong YJ; Whishaw IQ
    Behav Brain Res; 2004 Sep; 154(1):113-23. PubMed ID: 15302117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Grasping in absence of feedback: systematic biases endure extensive training.
    Bozzacchi C; Volcic R; Domini F
    Exp Brain Res; 2016 Jan; 234(1):255-65. PubMed ID: 26449965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of visual constraints in the trajectory formation of grasping movements.
    Palluel-Germain R; Boy F; Orliaguet JP; Coello Y
    Neurosci Lett; 2006 Jun; 401(1-2):97-102. PubMed ID: 16556486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.