BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28451857)

  • 1. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna.
    Varano V; Fabbri E; Pasteris A
    Ecotoxicology; 2017 Aug; 26(6):711-728. PubMed ID: 28451857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna.
    Rivetti C; Campos B; Barata C
    Aquat Toxicol; 2016 Jan; 170():289-296. PubMed ID: 26277448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poor elemental food quality reduces the toxicity of fluoxetine on Daphnia magna.
    Hansen LK; Frost PC; Larson JH; Metcalfe CD
    Aquat Toxicol; 2008 Jan; 86(1):99-103. PubMed ID: 18037510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna.
    de Oliveira LL; Antunes SC; Gonçalves F; Rocha O; Nunes B
    Drug Chem Toxicol; 2016; 39(1):13-21. PubMed ID: 25864724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic effects of 17α-ethinylestradiol, fluoxetine, and the mixture on individual and population-level end points in Daphnia magna.
    Luna TO; Plautz SC; Salice CJ
    Arch Environ Contam Toxicol; 2015 May; 68(4):603-11. PubMed ID: 25617053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna.
    Dzialowski EM; Turner PK; Brooks BW
    Arch Environ Contam Toxicol; 2006 May; 50(4):503-10. PubMed ID: 16583257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological assessment of the effects of fluoxetine on Daphnia magna based on acute toxicity, multigenerational reproduction effects, and attraction-repellence responses.
    Stremmel H; Weiss L; Parra G; Ramos-Rodríguez E; Araújo CVM
    Chemosphere; 2023 Jan; 312(Pt 1):137028. PubMed ID: 36323386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas.
    Stanley JK; Ramirez AJ; Mottaleb M; Chambliss CK; Brooks BW
    Environ Toxicol Chem; 2006 Jul; 25(7):1780-6. PubMed ID: 16833138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans.
    Christensen AM; Faaborg-Andersen S; Ingerslev F; Baun A
    Environ Toxicol Chem; 2007 Jan; 26(1):85-91. PubMed ID: 17269464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol.
    Nielsen ME; Roslev P
    Chemosphere; 2018 Nov; 211():978-985. PubMed ID: 30119029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals.
    Fuertes I; Piña B; Barata C
    Sci Total Environ; 2020 Sep; 733():139029. PubMed ID: 32446052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute and chronic ecotoxicological effects of pharmaceuticals and their mixtures in Daphnia similis.
    Tominaga FK; Boiani NF; Silva TT; Garcia VSG; Borrely SI
    Chemosphere; 2022 Dec; 309(Pt 1):136671. PubMed ID: 36209851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models.
    Loureiro S; Svendsen C; Ferreira AL; Pinheiro C; Ribeiro F; Soares AM
    Environ Toxicol Chem; 2010 Aug; 29(8):1716-26. PubMed ID: 20821624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.
    Coors A; Vollmar P; Sacher F; Polleichtner C; Hassold E; Gildemeister D; Kühnen U
    Water Res; 2018 Sep; 140():56-66. PubMed ID: 29684702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary effects of fluoxetine and zinc on the biomarker responses of the non-target model organism Daphnia magna.
    Atli G; Sevgiler Y
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):27988-28006. PubMed ID: 38528217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis.
    Franzellitti S; Buratti S; Valbonesi P; Fabbri E
    Aquat Toxicol; 2013 Sep; 140-141():249-56. PubMed ID: 23831970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management?
    Hochmuth JD; Asselman J; De Schamphelaere KAC
    Water Res; 2014 Sep; 60():41-53. PubMed ID: 24821194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish.
    Henry TB; Black MC
    Arch Environ Contam Toxicol; 2008 Feb; 54(2):325-30. PubMed ID: 17763886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial risk assessment for three beta-blockers found in the aquatic environment.
    Cleuvers M
    Chemosphere; 2005 Apr; 59(2):199-205. PubMed ID: 15722091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are some invertebrates exquisitely sensitive to the human pharmaceutical fluoxetine?
    Sumpter JP; Margiotta-Casaluci L
    Aquat Toxicol; 2014 Jan; 146():259-60. PubMed ID: 24360057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.