These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28451975)

  • 21. Computational polypharmacology: a new paradigm for drug discovery.
    Chaudhari R; Tan Z; Huang B; Zhang S
    Expert Opin Drug Discov; 2017 Mar; 12(3):279-291. PubMed ID: 28067061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Web-Based Tools for Polypharmacology Prediction.
    Awale M; Reymond JL
    Methods Mol Biol; 2019; 1888():255-272. PubMed ID: 30519952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.
    Ravikumar B; Aittokallio T
    Expert Opin Drug Discov; 2018 Feb; 13(2):179-192. PubMed ID: 29233023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs.
    Naveed H; Hameed US; Harrus D; Bourguet W; Arold ST; Gao X
    Bioinformatics; 2015 Dec; 31(24):3922-9. PubMed ID: 26286808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico methods to address polypharmacology: current status, applications and future perspectives.
    Lavecchia A; Cerchia C
    Drug Discov Today; 2016 Feb; 21(2):288-98. PubMed ID: 26743596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
    Chartier M; Morency LP; Zylber MI; Najmanovich RJ
    BMC Pharmacol Toxicol; 2017 Apr; 18(1):18. PubMed ID: 28449705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polypharmacology: challenges and opportunities in drug discovery.
    Anighoro A; Bajorath J; Rastelli G
    J Med Chem; 2014 Oct; 57(19):7874-87. PubMed ID: 24946140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.
    Reker D; Rodrigues T; Schneider P; Schneider G
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4067-72. PubMed ID: 24591595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the 'god father' of immune checkpoint.
    Soremekun OS; Olotu FA; Agoni C; Soliman MES
    Comput Biol Chem; 2019 Jun; 80():433-440. PubMed ID: 31146119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery.
    Roy S; Dhaneshwar S; Bhasin B
    Curr Drug Res Rev; 2021; 13(2):101-119. PubMed ID: 33573567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing Polypharmacology with Computer-Aided Drug Design and Systems Biology.
    Wathieu H; Issa NT; Byers SW; Dakshanamurthy S
    Curr Pharm Des; 2016; 22(21):3097-108. PubMed ID: 26907947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OCEAN: Optimized Cross rEActivity estimatioN.
    Czodrowski P; Bolick WG
    J Chem Inf Model; 2016 Oct; 56(10):2013-2023. PubMed ID: 27668814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational drug repurposing to predict approved and novel drug-disease associations.
    Khalid Z; Sezerman OU
    J Mol Graph Model; 2018 Oct; 85():91-96. PubMed ID: 30130693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding site matching in rational drug design: algorithms and applications.
    Naderi M; Lemoine JM; Govindaraj RG; Kana OZ; Feinstein WP; Brylinski M
    Brief Bioinform; 2019 Nov; 20(6):2167-2184. PubMed ID: 30169563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
    Haupt VJ; Daminelli S; Schroeder M
    PLoS One; 2013; 8(6):e65894. PubMed ID: 23805191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology.
    Durrant JD; Amaro RE; Xie L; Urbaniak MD; Ferguson MA; Haapalainen A; Chen Z; Di Guilmi AM; Wunder F; Bourne PE; McCammon JA
    PLoS Comput Biol; 2010 Jan; 6(1):e1000648. PubMed ID: 20098496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics.
    Li H; Pei F; Taylor DL; Bahar I
    Bioinformatics; 2020 Jun; 36(12):3935-3937. PubMed ID: 32221612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.
    Chiu YY; Lin CY; Lin CT; Hsu KC; Chang LZ; Yang JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S21. PubMed ID: 23281852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.