BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28451975)

  • 21. Computational polypharmacology: a new paradigm for drug discovery.
    Chaudhari R; Tan Z; Huang B; Zhang S
    Expert Opin Drug Discov; 2017 Mar; 12(3):279-291. PubMed ID: 28067061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Web-Based Tools for Polypharmacology Prediction.
    Awale M; Reymond JL
    Methods Mol Biol; 2019; 1888():255-272. PubMed ID: 30519952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.
    Ravikumar B; Aittokallio T
    Expert Opin Drug Discov; 2018 Feb; 13(2):179-192. PubMed ID: 29233023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs.
    Naveed H; Hameed US; Harrus D; Bourguet W; Arold ST; Gao X
    Bioinformatics; 2015 Dec; 31(24):3922-9. PubMed ID: 26286808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico methods to address polypharmacology: current status, applications and future perspectives.
    Lavecchia A; Cerchia C
    Drug Discov Today; 2016 Feb; 21(2):288-98. PubMed ID: 26743596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
    Chartier M; Morency LP; Zylber MI; Najmanovich RJ
    BMC Pharmacol Toxicol; 2017 Apr; 18(1):18. PubMed ID: 28449705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polypharmacology: challenges and opportunities in drug discovery.
    Anighoro A; Bajorath J; Rastelli G
    J Med Chem; 2014 Oct; 57(19):7874-87. PubMed ID: 24946140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.
    Reker D; Rodrigues T; Schneider P; Schneider G
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4067-72. PubMed ID: 24591595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the 'god father' of immune checkpoint.
    Soremekun OS; Olotu FA; Agoni C; Soliman MES
    Comput Biol Chem; 2019 Jun; 80():433-440. PubMed ID: 31146119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery.
    Roy S; Dhaneshwar S; Bhasin B
    Curr Drug Res Rev; 2021; 13(2):101-119. PubMed ID: 33573567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing Polypharmacology with Computer-Aided Drug Design and Systems Biology.
    Wathieu H; Issa NT; Byers SW; Dakshanamurthy S
    Curr Pharm Des; 2016; 22(21):3097-108. PubMed ID: 26907947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OCEAN: Optimized Cross rEActivity estimatioN.
    Czodrowski P; Bolick WG
    J Chem Inf Model; 2016 Oct; 56(10):2013-2023. PubMed ID: 27668814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational drug repurposing to predict approved and novel drug-disease associations.
    Khalid Z; Sezerman OU
    J Mol Graph Model; 2018 Oct; 85():91-96. PubMed ID: 30130693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding site matching in rational drug design: algorithms and applications.
    Naderi M; Lemoine JM; Govindaraj RG; Kana OZ; Feinstein WP; Brylinski M
    Brief Bioinform; 2019 Nov; 20(6):2167-2184. PubMed ID: 30169563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
    Haupt VJ; Daminelli S; Schroeder M
    PLoS One; 2013; 8(6):e65894. PubMed ID: 23805191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology.
    Durrant JD; Amaro RE; Xie L; Urbaniak MD; Ferguson MA; Haapalainen A; Chen Z; Di Guilmi AM; Wunder F; Bourne PE; McCammon JA
    PLoS Comput Biol; 2010 Jan; 6(1):e1000648. PubMed ID: 20098496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics.
    Li H; Pei F; Taylor DL; Bahar I
    Bioinformatics; 2020 Jun; 36(12):3935-3937. PubMed ID: 32221612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.
    Chiu YY; Lin CY; Lin CT; Hsu KC; Chang LZ; Yang JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S21. PubMed ID: 23281852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.