BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 28452176)

  • 1. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms.
    Napieralski SA; Fang Y; Marcon V; Forsythe B; Brantley SL; Xu H; Roden EE
    Geobiology; 2022 Mar; 20(2):271-291. PubMed ID: 34633148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2.
    Yacob T; Pandey S; Silverstein J; Rajaram H
    Environ Sci Technol; 2013 Aug; 47(15):8658-65. PubMed ID: 23777272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation.
    Bosch J; Meckenstock RU
    Biochem Soc Trans; 2012 Dec; 40(6):1280-3. PubMed ID: 23176468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Year
    Mitsunobu S; Ohashi Y; Makita H; Suzuki Y; Nozaki T; Ohigashi T; Ina T; Takaki Y
    Appl Environ Microbiol; 2021 Nov; 87(23):e0097721. PubMed ID: 34550782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.
    Yan R; Kappler A; Peiffer S
    Environ Sci Technol; 2015 Oct; 49(19):11403-10. PubMed ID: 26335043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silane-based coatings on the pyrite for remediation of acid mine drainage.
    Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R
    Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats.
    Gomes ML; Klatt JM; Dick GJ; Grim SL; Rico KI; Medina M; Ziebis W; Kinsman-Costello L; Sheldon ND; Fike DA
    Geobiology; 2022 Jan; 20(1):60-78. PubMed ID: 34331395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.
    Konhauser KO; Lalonde SV; Planavsky NJ; Pecoits E; Lyons TW; Mojzsis SJ; Rouxel OJ; Barley ME; Rosìere C; Fralick PW; Kump LR; Bekker A
    Nature; 2011 Oct; 478(7369):369-73. PubMed ID: 22012395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.
    Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.
    Harrold ZR; Skidmore ML; Hamilton TL; Desch L; Amada K; van Gelder W; Glover K; Roden EE; Boyd ES
    Appl Environ Microbiol; 2015 Dec; 82(5):1486-95. PubMed ID: 26712544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrite formation from FeS and H
    Thiel J; Byrne JM; Kappler A; Schink B; Pester M
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6897-6902. PubMed ID: 30886102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of heterotrophic microbial growth on biological oxidation of pyrite.
    Marchand EA; Silverstein J
    Environ Sci Technol; 2002 Dec; 36(24):5483-90. PubMed ID: 12521179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous geochemical and surface science investigation of the effect of phosphate on pyrite oxidation.
    Elsetinow AR; Schoonen MA; Strongin DR
    Environ Sci Technol; 2001 Jun; 35(11):2252-7. PubMed ID: 11414026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.