These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28452494)

  • 41. Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries.
    Xie C; Shan H; Song X; Chen L; Wang J; Shi JW; Hu J; Zhang J; Li X
    J Colloid Interface Sci; 2021 Jun; 592():448-454. PubMed ID: 33714763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Free-Standing Sulfur-Carbon Nanotube Electrode with a Deposited Sulfur Layer for High-Energy Lithium-Sulfur Batteries.
    Kang J; Jung Y
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5019-5023. PubMed ID: 32126693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition.
    Chung SH; Manthiram A
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Performance Flexible Sulfur Cathodes with Robust Electrode Skeletons Built by a Hierarchical Self-Assembling Slurry.
    Zhang Z; Mo J; Yu P; Feng L; Wang Y; Lu Y; Yang W
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201881. PubMed ID: 35853244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.
    Sapkota N; Chiluwal S; Parajuli P; Rowland A; Podila R
    Adv Sci (Weinh); 2023 May; 10(15):e2206901. PubMed ID: 36994629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward Theoretically Cycling-Stable Lithium-Sulfur Battery Using a Foldable and Compositionally Heterogeneous Cathode.
    Zhong L; Yang K; Guan R; Wang L; Wang S; Han D; Xiao M; Meng Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43640-43647. PubMed ID: 29172445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Conductive Ni
    Cheng J; Zhao D; Fan L; Wu X; Wang M; Wu H; Guan B; Zhang N; Sun K
    Chemistry; 2018 Sep; 24(50):13253-13258. PubMed ID: 29869451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading.
    Lu S; Chen Y; Wu X; Wang Z; Li Y
    Sci Rep; 2014 Apr; 4():4629. PubMed ID: 24717445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.
    Chung SH; Manthiram A
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binder-Free and High-Loading Cathode Realized by Hierarchical Structure for Potassium-Sulfur Batteries.
    Yang K; Kim S; Yang X; Cho M; Lee Y
    Small Methods; 2022 Jan; 6(1):e2100899. PubMed ID: 35041292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery.
    Li P; Hwang JY; Sun YK
    ACS Nano; 2019 Feb; 13(2):2624-2633. PubMed ID: 30759341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries.
    Chung SH; Chang CH; Manthiram A
    ACS Nano; 2016 Nov; 10(11):10462-10470. PubMed ID: 27783490
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conductive Porous Laminated Vanadium Nitride as Carbon-Free Hosts for High-Loading Sulfur Cathodes in Lithium-Sulfur Batteries.
    Liu R; Liu W; Bu Y; Yang W; Wang C; Priest C; Liu Z; Wang Y; Chen J; Wang Y; Cheng J; Lin X; Feng X; Wu G; Ma Y; Huang W
    ACS Nano; 2020 Dec; 14(12):17308-17320. PubMed ID: 33253548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Loading Lithium-Sulfur Batteries with Solvent-Free Dry-Electrode Processing.
    Sul H; Lee D; Manthiram A
    Small; 2024 Mar; ():e2400728. PubMed ID: 38433393
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium-Sulfur Cells with Enhanced Cycling Stability.
    Ponraj R; Kannan AG; Ahn JH; Lee JH; Kang J; Han B; Kim DW
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38445-38454. PubMed ID: 29035030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.
    Nitze F; Agostini M; Lundin F; Palmqvist AE; Matic A
    Sci Rep; 2016 Dec; 6():39615. PubMed ID: 28008981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temperature-Dependent Vapor Infiltration of Sulfur into Highly Porous Hierarchical Three-Dimensional Conductive Carbon Networks for Lithium Ion Battery Applications.
    Cavers H; Krüger H; Polonskyi O; Schütt F; Adelung R; Hansen S
    ACS Omega; 2020 Nov; 5(43):28196-28203. PubMed ID: 33163802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.