These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28452494)

  • 61. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries.
    Sun Q; Fang X; Weng W; Deng J; Chen P; Ren J; Guan G; Wang M; Peng H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10539-44. PubMed ID: 26178766
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries.
    Xiao P; Sun L; Liao D; Agboola PO; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33269-33275. PubMed ID: 30199222
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-Dimensional Graphene-Carbon Nanotube-Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries.
    Gnana Kumar G; Chung SH; Raj Kumar T; Manthiram A
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20627-20634. PubMed ID: 29799717
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.
    Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A MnO
    Li Y; Ye D; Liu W; Shi B; Guo R; Zhao H; Pei H; Xu J; Xie J
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28566-28573. PubMed ID: 27472481
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.
    Cao S; Feng X; Song Y; Xue X; Liu H; Miao M; Fang J; Shi L
    ACS Appl Mater Interfaces; 2015 May; 7(20):10695-701. PubMed ID: 25938940
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.
    Zhao Y; Yin F; Zhang Y; Zhang C; Mentbayeva A; Umirov N; Xie H; Bakenov Z
    Nanoscale Res Lett; 2015 Dec; 10(1):450. PubMed ID: 26586150
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.
    Sun L; Kong W; Li M; Wu H; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    Nanotechnology; 2016 Feb; 27(7):075401. PubMed ID: 26778739
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries.
    Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiscale Structural Engineering of Sulfur/Carbon Cathodes Enables High Performance All-Solid-State LiS Batteries.
    Xu G; Yan Z; Yang H; Zhang X; Su Y; Huang Z; Zhang L; Tang Y; Wang Z; Zhu L; Lin J; Yang L; Huang J
    Small; 2023 Jul; 19(30):e2300420. PubMed ID: 37046177
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode.
    Ma L; Zhuang HL; Wei S; Hendrickson KE; Kim MS; Cohn G; Hennig RG; Archer LA
    ACS Nano; 2016 Jan; 10(1):1050-9. PubMed ID: 26634409
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries.
    Fang R; Zhao S; Hou P; Cheng M; Wang S; Cheng HM; Liu C; Li F
    Adv Mater; 2016 May; 28(17):3374-82. PubMed ID: 26932832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries.
    Wang H; Wei Y; Wang G; Pu Y; Yuan L; Liu C; Wang Q; Zhang Y; Wu H
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201823. PubMed ID: 35712758
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-Assembly of Polyethylene Glycol-Grafted Carbon Nanotube/Sulfur Composite with Nest-like Structure for High-Performance Lithium-Sulfur Batteries.
    Li H; Sun L; Wang G
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6061-71. PubMed ID: 26890092
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective S/Li
    Wu T; Qi J; Xu M; Zhou D; Xiao Z
    ACS Nano; 2020 Nov; 14(11):15011-15022. PubMed ID: 33112596
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Water-Processable and Multiscale-Designed Vanadium Oxide Cathodes with Predominant Zn
    Liu X; Ni W; Wang Y; Liang Y; Wu B; Xu G; Wei X; Yang L
    Small; 2022 Mar; 18(10):e2105796. PubMed ID: 35038222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.