These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Learning to swim efficiently in a nonuniform flow field. Sankaewtong K; Molina JJ; Turner MS; Yamamoto R Phys Rev E; 2023 Jun; 107(6-2):065102. PubMed ID: 37464629 [TBL] [Abstract][Full Text] [Related]
7. Zermelo's problem: Optimal point-to-point navigation in 2D turbulent flows using reinforcement learning. Biferale L; Bonaccorso F; Buzzicotti M; Clark Di Leoni P; Gustavsson K Chaos; 2019 Oct; 29(10):103138. PubMed ID: 31675828 [TBL] [Abstract][Full Text] [Related]
8. Smart active particles learn and transcend bacterial foraging strategies. Nasiri M; Loran E; Liebchen B Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2317618121. PubMed ID: 38557193 [TBL] [Abstract][Full Text] [Related]
9. Evolving interpretable plasticity for spiking networks. Jordan J; Schmidt M; Senn W; Petrovici MA Elife; 2021 Oct; 10():. PubMed ID: 34709176 [TBL] [Abstract][Full Text] [Related]
10. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles. Caraglio M; Kaur H; Fiderer LJ; López-Incera A; Briegel HJ; Franosch T; Muñoz-Gil G Soft Matter; 2024 Feb; 20(9):2008-2016. PubMed ID: 38328899 [TBL] [Abstract][Full Text] [Related]
11. Chemotaxis of an elastic flagellated microrobot. Mo C; Fu Q; Bian X Phys Rev E; 2023 Oct; 108(4-1):044408. PubMed ID: 37978695 [TBL] [Abstract][Full Text] [Related]
12. Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Zheng J; Dai B; Wang J; Xiong Z; Yang Y; Liu J; Zhan X; Wan Z; Tang J Nat Commun; 2017 Nov; 8(1):1438. PubMed ID: 29127414 [TBL] [Abstract][Full Text] [Related]
13. Markovian robots: Minimal navigation strategies for active particles. Nava LG; Großmann R; Peruani F Phys Rev E; 2018 Apr; 97(4-1):042604. PubMed ID: 29758683 [TBL] [Abstract][Full Text] [Related]
14. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal. Gnadt W; Grossberg S Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419 [TBL] [Abstract][Full Text] [Related]
15. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation. Wang D; Si W; Luo Y; Wang H; Ma T Network; 2019; 30(1-4):79-106. PubMed ID: 31564179 [TBL] [Abstract][Full Text] [Related]
16. Endotaxis: A neuromorphic algorithm for mapping, goal-learning, navigation, and patrolling. Zhang T; Rosenberg M; Jing Z; Perona P; Meister M Elife; 2024 Feb; 12():. PubMed ID: 38420996 [TBL] [Abstract][Full Text] [Related]
17. Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning. Zeng J; Ju R; Qin L; Hu Y; Yin Q; Hu C Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491927 [TBL] [Abstract][Full Text] [Related]
18. Phototactic microswimmers in pulsatile flow: Toward a novel harvesting method. Minh CN; Peerhossaini H; Jarrahi M Biomicrofluidics; 2022 Sep; 16(5):054103. PubMed ID: 36186758 [TBL] [Abstract][Full Text] [Related]
19. Smart self-propelled particles: a framework to investigate the cognitive bases of movement. Lecheval V; Mann RP J R Soc Interface; 2023 Jul; 20(204):20230127. PubMed ID: 37491908 [TBL] [Abstract][Full Text] [Related]