These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Chemotaxis of artificial microswimmers in active density waves. Geiseler A; Hänggi P; Marchesoni F; Mulhern C; Savel'ev S Phys Rev E; 2016 Jul; 94(1-1):012613. PubMed ID: 27575185 [TBL] [Abstract][Full Text] [Related]
26. Artificial microswimmers get smart. Stark H Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043556 [TBL] [Abstract][Full Text] [Related]
27. Human-level control through deep reinforcement learning. Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670 [TBL] [Abstract][Full Text] [Related]
28. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning. Chalmers E; Contreras EB; Robertson B; Luczak A; Gruber A IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2259-2270. PubMed ID: 28436902 [TBL] [Abstract][Full Text] [Related]
29. Optimal navigation of a smart active particle: directional and distance sensing. Putzke M; Stark H Eur Phys J E Soft Matter; 2023 Jun; 46(6):48. PubMed ID: 37335344 [TBL] [Abstract][Full Text] [Related]
30. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model. Gil Ó; Garrell A; Sanfeliu A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395 [TBL] [Abstract][Full Text] [Related]
31. Learning to soar in turbulent environments. Reddy G; Celani A; Sejnowski TJ; Vergassola M Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4877-84. PubMed ID: 27482099 [TBL] [Abstract][Full Text] [Related]
32. Path planning versus cue responding: a bio-inspired model of switching between navigation strategies. Dollé L; Sheynikhovich D; Girard B; Chavarriaga R; Guillot A Biol Cybern; 2010 Oct; 103(4):299-317. PubMed ID: 20617443 [TBL] [Abstract][Full Text] [Related]
33. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning. Chalmers E; Luczak A; Gruber AJ Front Comput Neurosci; 2016; 10():128. PubMed ID: 28018203 [TBL] [Abstract][Full Text] [Related]
34. Two-dimensional motion of Brownian swimmers in linear flows. Sandoval M; Jimenez A J Biol Phys; 2016 Mar; 42(2):199-212. PubMed ID: 26428909 [TBL] [Abstract][Full Text] [Related]
35. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder. Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653 [TBL] [Abstract][Full Text] [Related]
36. A model of hippocampally dependent navigation, using the temporal difference learning rule. Foster DJ; Morris RG; Dayan P Hippocampus; 2000; 10(1):1-16. PubMed ID: 10706212 [TBL] [Abstract][Full Text] [Related]
37. On the cross-streamline lift of microswimmers in viscoelastic flows. Choudhary A; Stark H Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484 [TBL] [Abstract][Full Text] [Related]
38. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning. Zhang X; Wang C; Liu Y; Chen X Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977 [TBL] [Abstract][Full Text] [Related]
39. Dynamical density functional theory for microswimmers. Menzel AM; Saha A; Hoell C; Löwen H J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562 [TBL] [Abstract][Full Text] [Related]
40. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control. Ribeiro CH; Hemerly EM Int J Neural Syst; 2000 Feb; 10(1):71-8. PubMed ID: 10798711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]