These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW). Ng JW; Devendran C; Neild A Lab Chip; 2017 Oct; 17(20):3489-3497. PubMed ID: 28929163 [TBL] [Abstract][Full Text] [Related]
7. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Devendran C; Albrecht T; Brenker J; Alan T; Neild A Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363 [TBL] [Abstract][Full Text] [Related]
8. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities. Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142 [TBL] [Abstract][Full Text] [Related]
9. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940 [TBL] [Abstract][Full Text] [Related]
10. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves. Doinikov AA; Thibault P; Marmottant P Phys Rev E; 2017 Jul; 96(1-1):013101. PubMed ID: 29347059 [TBL] [Abstract][Full Text] [Related]
11. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
12. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. Aubert V; Wunenburger R; Valier-Brasier T; Rabaud D; Kleman JP; Poulain C Lab Chip; 2016 Jul; 16(13):2532-9. PubMed ID: 27292590 [TBL] [Abstract][Full Text] [Related]
14. The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW). Fakhfouri A; Devendran C; Ahmed A; Soria J; Neild A Lab Chip; 2018 Dec; 18(24):3926-3938. PubMed ID: 30474095 [TBL] [Abstract][Full Text] [Related]
15. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Raymond SJ; Collins DJ; O'Rorke R; Tayebi M; Ai Y; Williams J Sci Rep; 2020 May; 10(1):8745. PubMed ID: 32457358 [TBL] [Abstract][Full Text] [Related]
16. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. Ma Z; Guo J; Liu YJ; Ai Y Nanoscale; 2015 Sep; 7(33):14047-54. PubMed ID: 26239679 [TBL] [Abstract][Full Text] [Related]
17. Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid. Lopes JH; Azarpeyvand M; Silva GT IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):186-97. PubMed ID: 26529753 [TBL] [Abstract][Full Text] [Related]
18. Spectral holographic trapping: Creating dynamic force landscapes with polyphonic waves. Morrell MC; Lee JE; Grier DG Phys Rev E; 2024 Apr; 109(4-1):044901. PubMed ID: 38755870 [TBL] [Abstract][Full Text] [Related]
19. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
20. Huygens' Principle geometric derivation and elimination of the wake and backward wave. Anderson FL Sci Rep; 2021 Oct; 11(1):20257. PubMed ID: 34642401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]