These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 2845254)
1. Two sites of azo reduction in the monooxygenase system. Peterson FJ; Holtzman JL; Crankshaw D; Mason RP Mol Pharmacol; 1988 Oct; 34(4):597-603. PubMed ID: 2845254 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P-450 reductase and partially purified cytochrome P-450. Oxygen and carbon monoxide sensitivity and stimulation by FAD and FMN. Levine WG; Raza H Drug Metab Dispos; 1988; 16(3):441-8. PubMed ID: 2900738 [TBL] [Abstract][Full Text] [Related]
3. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Winston GW; Church DF; Cueto R; Pryor WA Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056 [TBL] [Abstract][Full Text] [Related]
4. [Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase]. Liakhovich VV; Mishin VM; Pokrovskii AG Biokhimiia; 1977 Jul; 42(7):1323-30. PubMed ID: 198028 [TBL] [Abstract][Full Text] [Related]
5. Immunochemical detection and quantitation of microsomal cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate:cytochrome P-450 reductase in the rat ventral prostate. Haaparanta T; Halpert J; Glaumann H; Gustafsson JA Cancer Res; 1983 Nov; 43(11):5131-7. PubMed ID: 6413054 [TBL] [Abstract][Full Text] [Related]
6. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride. Persson JO; Terelius Y; Ingelman-Sundberg M Xenobiotica; 1990 Sep; 20(9):887-900. PubMed ID: 2122605 [TBL] [Abstract][Full Text] [Related]
7. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes. Jeffery EH Mol Pharmacol; 1983 Mar; 23(2):467-73. PubMed ID: 6132332 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P450. Zbaida S; Levine WG Biochem Pharmacol; 1990 Dec; 40(11):2415-23. PubMed ID: 2125221 [TBL] [Abstract][Full Text] [Related]
9. Selective inactivation of rat lung and liver microsomal NADPH-cytochrome c reductase by acrolein. Patel JM; Ortiz E; Kolmstetter C; Leibman KC Drug Metab Dispos; 1984; 12(4):460-3. PubMed ID: 6148213 [TBL] [Abstract][Full Text] [Related]
10. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
11. Reduction of 3'-azido-2',3'-dideoxynucleosides to their 3'-amino metabolite is mediated by cytochrome P-450 and NADPH-cytochrome P-450 reductase in rat liver microsomes. Cretton EM; Sommadossi JP Drug Metab Dispos; 1993; 21(5):946-50. PubMed ID: 7902260 [TBL] [Abstract][Full Text] [Related]
12. Triphenyltin acetate-mediated in vitro inactivation of rat liver cytochrome P-450. Nebbia C; Ceppa L; Dacasto M; Carletti M J Toxicol Environ Health A; 1999 Mar; 56(6):433-47. PubMed ID: 10096365 [TBL] [Abstract][Full Text] [Related]
13. Differences in the mechanism of functional interaction between NADPH-cytochrome P-450 reductase and its redox partners. Tamburini PP; Schenkman JB Mol Pharmacol; 1986 Aug; 30(2):178-85. PubMed ID: 3016501 [TBL] [Abstract][Full Text] [Related]
14. Effect of superoxide dismutase on hydroxylase activity and hydrogen peroxide formation in anthranilamide hydroxylation by a rat liver microsomal monooxygenase system. Ohta Y; Ishiguro I; Naito J; Shinohara R Biochem Int; 1984 May; 8(5):617-27. PubMed ID: 6477624 [TBL] [Abstract][Full Text] [Related]
15. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1. Keyes SR; Fracasso PM; Heimbrook DC; Rockwell S; Sligar SG; Sartorelli AC Cancer Res; 1984 Dec; 44(12 Pt 1):5638-43. PubMed ID: 6437671 [TBL] [Abstract][Full Text] [Related]
16. [Reconstruction of the liver microsomal monooxygenase system in a solution from NADP-H-cytochrome P-450 reductase and cytochrome P-450 monomers]. Skotselias ED; Kanaeva IP; Dzhuzenova ChS; Gordeev SA; Kariakin AV Dokl Akad Nauk SSSR; 1987; 293(3):748-51. PubMed ID: 3107957 [No Abstract] [Full Text] [Related]
17. Regulation of thiol environment of the N-demethylation and ring hydroxylation of N,N-dimethyl-4-aminoazobenzene (DAB) by rat liver microsomes. Levine WG Drug Metab Dispos; 1986; 14(1):13-8. PubMed ID: 2868856 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of rat liver microsomal NADPH cytochrome P450 reductase by glutathione and glutathione disulfide. Scholz RW; Reddy PV; Liken AD; Reddy CC Biochem Biophys Res Commun; 1996 Sep; 226(2):475-80. PubMed ID: 8806659 [TBL] [Abstract][Full Text] [Related]
19. Solubilisation, purification and reconstitution of hepatic microsomal azoreductase activity. Mallett AK; King LJ; Walker R Biochem Pharmacol; 1985 Feb; 34(3):337-42. PubMed ID: 3918538 [TBL] [Abstract][Full Text] [Related]
20. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]