These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28452773)

  • 21. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.
    Kango S; Kumar R
    Environ Monit Assess; 2016 Jan; 188(1):60. PubMed ID: 26711813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.
    El-Sayed M; Eshaq G; ElMetwally AE
    Water Sci Technol; 2016 Oct; 74(7):1644-1657. PubMed ID: 27763345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L.
    Lata H; Garg VK; Gupta RK
    J Hazard Mater; 2008 Sep; 157(2-3):503-9. PubMed ID: 18294768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.
    Ma F; Du H; Li R; Zhang Z
    Water Sci Technol; 2016; 74(5):1127-35. PubMed ID: 27642832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphine functionalised multiwalled carbon nanotubes: a new adsorbent for the removal of nickel from aqueous solution.
    Adolph MA; Xavier YM; Kriveshini P; Rui K
    J Environ Sci (China); 2012; 24(6):1133-41. PubMed ID: 23505882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effective Ni(II) removal of red mud modified chitosan from aqueous solution.
    Luu TT; Nguyen DK; Nguyen TTP; Ho TH; Dinh VP; Kiet HAT
    Environ Monit Assess; 2023 Jan; 195(2):254. PubMed ID: 36592254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb
    Pap S; Radonić J; Trifunović S; Adamović D; Mihajlović I; Vojinović Miloradov M; Turk Sekulić M
    J Environ Manage; 2016 Dec; 184(Pt 2):297-306. PubMed ID: 27729179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speciation and removal of chromium from aqueous solution by white, yellow and red UAE sand.
    Khamis M; Jumean F; Abdo N
    J Hazard Mater; 2009 Sep; 169(1-3):948-52. PubMed ID: 19443116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni
    Alizadeh M; Peighambardoust SJ; Foroutan R; Azimi H; Ramavandi B
    Environ Res; 2022 Sep; 212(Pt B):113242. PubMed ID: 35413302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of aqueous nickel (II) using laterite as a low-cost adsorbent.
    Mukherjee S; Kumar S; Misra AK; Acharya PC
    Water Environ Res; 2006 Oct; 78(11):2268-75. PubMed ID: 17120446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.
    Srivastava N; Thakur AK; Shahi VK
    Carbohydr Polym; 2016 Jan; 136():1315-22. PubMed ID: 26572476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of nickel ions from water by multi-walled carbon nanotubes.
    Kandah MI; Meunier JL
    J Hazard Mater; 2007 Jul; 146(1-2):283-8. PubMed ID: 17196328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones.
    Bouhamed F; Elouear Z; Bouzid J; Ouddane B
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15801-6. PubMed ID: 25843824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: kinetic and thermodynamic studies.
    Boujelben N; Bouzid J; Elouear Z; Feki M
    Environ Technol; 2010 Dec; 31(14):1623-34. PubMed ID: 21275258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.
    Vilvanathan S; Shanthakumar S
    Int J Phytoremediation; 2016 Oct; 18(10):1046-59. PubMed ID: 27185382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems.
    Boujelben N; Bouzid J; Elouear Z
    J Hazard Mater; 2009 Apr; 163(1):376-82. PubMed ID: 18701213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials.
    Dolatyari L; Yaftian MR; Rostamnia S
    J Environ Manage; 2016 Mar; 169():8-17. PubMed ID: 26720327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of phosphate ions from an aqueous solution by calcined nickel-cobalt binary hydroxide.
    Ogata F; Ueta E; Toda M; Otani M; Kawasaki N
    Water Sci Technol; 2017 Jan; 75(1-2):94-105. PubMed ID: 28067650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina.
    Khobragade MU; Pal A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):385-95. PubMed ID: 25723065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.