These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28452784)
21. New insights to study the accumulation and erosion processes of fine-grained organic sediments in combined sewer systems from a laboratory scale model. Regueiro-Picallo M; Suárez J; Sañudo E; Puertas J; Anta J Sci Total Environ; 2020 May; 716():136923. PubMed ID: 32044479 [TBL] [Abstract][Full Text] [Related]
22. Sewer sediment adhesion reduction and hydraulic floating promotion by alkaline treatment. Pang H; Li X; Yuan H; Yuan H; Lu J Sci Total Environ; 2023 Oct; 893():164896. PubMed ID: 37329905 [TBL] [Abstract][Full Text] [Related]
23. Flocculation/aggregation of cohesive sediments in the urban continuum: implications for stormwater management. Droppo IG; Irvine KN; Jaskot C Environ Technol; 2002 Jan; 23(1):27-41. PubMed ID: 11918400 [TBL] [Abstract][Full Text] [Related]
24. Estimation of uncertainty in long term combined sewer sediment behaviour predictions, a UK case study. Schellart AN; Buijs FA; Tait SJ; Ashley RM Water Sci Technol; 2008; 57(9):1405-11. PubMed ID: 18496006 [TBL] [Abstract][Full Text] [Related]
25. A model for non-uniform sediment transport induced by flushing in sewer channels. Campisano A; Modica C; Creaco E; Shahsavari G Water Res; 2019 Oct; 163():114903. PubMed ID: 31374403 [TBL] [Abstract][Full Text] [Related]
26. Total and settling velocity-fractionated pollution potential of sewer sediments in Jiaxing, China. Zhou Y; Zhang P; Zhang Y; Li J; Zhang T; Yu T Environ Sci Pollut Res Int; 2017 Oct; 24(29):23133-23143. PubMed ID: 28828552 [TBL] [Abstract][Full Text] [Related]
27. Erosion mechanisms in combined sewers and the potential for pollutant release to receiving waters and water treatment plants. McIlhatton TD; Sakrabani R; Ashle RM; Burrows R Water Sci Technol; 2002; 45(3):61-9. PubMed ID: 11902482 [TBL] [Abstract][Full Text] [Related]
28. Sewer sediment management: some historical aspects of egg-shaped sewers and flushing tanks. Bertrand-Krajewskl JL Water Sci Technol; 2003; 47(4):109-22. PubMed ID: 12666808 [TBL] [Abstract][Full Text] [Related]
29. In-situ sewer sediment self-cleaning by plant ash-driven hydrolysis: Impairing adhesion and hydraulic erosion resistance from gelatinous biopolymer molecule deconstruction. Pang H; Li X; Qin Q; Wei Q; Zhang Y; Xu D; Xu Y; Zhang Z; Lu J Sci Total Environ; 2024 Jan; 908():168276. PubMed ID: 37923257 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of sewer sediment control and disruption of adhesive gelatinous sediment structure using low-dose calcium peroxide. Tang Z; Xu H; Zhu R; Xie C; Xiao H; Liang Z; Li H Environ Res; 2024 Feb; 243():117852. PubMed ID: 38065385 [TBL] [Abstract][Full Text] [Related]
31. Sulfide and methane production in sewer sediments. Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244 [TBL] [Abstract][Full Text] [Related]
32. Spatial variability of characteristics and origins of urban wet weather pollution in combined sewers. Kafi-Benyahia M; Gromaire MG; Chebbo G Water Sci Technol; 2005; 52(3):53-62. PubMed ID: 16206844 [TBL] [Abstract][Full Text] [Related]
33. Stormwater quality modelling in combined sewers: calibration and uncertainty analysis. Kanso A; Chebbo G; Tassin B Water Sci Technol; 2005; 52(3):63-71. PubMed ID: 16206845 [TBL] [Abstract][Full Text] [Related]
34. A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits. Shahsavari G; Arnaud-Fassetta G; Campisano A Water Res; 2017 Jul; 118():59-69. PubMed ID: 28412551 [TBL] [Abstract][Full Text] [Related]
35. Functional evaluation of pollutant transformation in sediment from combined sewer system. Shi X; Ngo HH; Sang L; Jin P; Wang XC; Wang G Environ Pollut; 2018 Jul; 238():85-93. PubMed ID: 29547865 [TBL] [Abstract][Full Text] [Related]
36. Field performance of self-siphon sediment cleansing set for sediment removal in deep CSO chamber. Zhou Y; Zhang Y; Tang P Water Sci Technol; 2013; 67(2):278-83. PubMed ID: 23168624 [TBL] [Abstract][Full Text] [Related]
37. Sterols: a tracer of organic matter in combined sewers. Zgheib S; Gromaire MC; Lorgeoux C; Saad M; Chebbo G Water Sci Technol; 2008; 57(11):1705-12. PubMed ID: 18547920 [TBL] [Abstract][Full Text] [Related]
38. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions. Mouri G; Oki T Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221 [TBL] [Abstract][Full Text] [Related]
39. Particle velocity and sediment transport at the limit of deposition in sewers. Ota JJ; Perrusquía GS Water Sci Technol; 2013; 67(5):959-67. PubMed ID: 23416585 [TBL] [Abstract][Full Text] [Related]
40. A method for the numerical assessment of sediment interceptors. Faram MG; Harwood R Water Sci Technol; 2003; 47(4):167-74. PubMed ID: 12666814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]