These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 28453251)
41. Manure application: A trigger for vertical accumulation of antibiotic resistance genes in cropland soils. Mu M; Yang F; Han B; Tian X; Zhang K Ecotoxicol Environ Saf; 2022 Jun; 237():113555. PubMed ID: 35483148 [TBL] [Abstract][Full Text] [Related]
42. Antibiotic resistome and associated bacterial communities in agricultural soil following the amendments of swine manure-derived fermentation bed waste. Pan Z; Chen Z; Zhu L; Avellán-Llaguno RD; Liu B; Huang Q Environ Sci Pollut Res Int; 2023 Oct; 30(47):104520-104531. PubMed ID: 37704808 [TBL] [Abstract][Full Text] [Related]
43. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. Sandberg KD; LaPara TM FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26738555 [TBL] [Abstract][Full Text] [Related]
44. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. Muziasari WI; Pärnänen K; Johnson TA; Lyra C; Karkman A; Stedtfeld RD; Tamminen M; Tiedje JM; Virta M FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw052. PubMed ID: 26976842 [TBL] [Abstract][Full Text] [Related]
45. Flooding drives the temporal turnover of antibiotic resistance gene in manure-amended soil-water continuum. Xiang Q; Fu CX; Lu CY; Sun AQ; Chen QL; Qiao M Environ Int; 2023 Sep; 179():108168. PubMed ID: 37647704 [TBL] [Abstract][Full Text] [Related]
46. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Zhou SY; Zhu D; Giles M; Yang XR; Daniell T; Neilson R; Zhu YG Environ Pollut; 2019 Sep; 252(Pt A):227-235. PubMed ID: 31153027 [TBL] [Abstract][Full Text] [Related]
47. Conversion of swine manure into biochar for soil amendment: Efficacy and underlying mechanism of dissipating antibiotic resistance genes. He Y; Zhao X; Zhu S; Yuan L; Li X; Feng Z; Yang X; Luo L; Xiao Y; Liu Y; Wang L; Deng O Sci Total Environ; 2023 May; 871():162046. PubMed ID: 36758702 [TBL] [Abstract][Full Text] [Related]
48. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. McKinney CW; Dungan RS; Moore A; Leytem AB FEMS Microbiol Ecol; 2018 Mar; 94(3):. PubMed ID: 29360961 [TBL] [Abstract][Full Text] [Related]
49. Distribution of antimicrobial resistance across the overall environment of dairy farms - A case study. Guo X; Akram S; Stedtfeld R; Johnson M; Chabrelie A; Yin D; Mitchell J Sci Total Environ; 2021 Sep; 788():147489. PubMed ID: 34134353 [TBL] [Abstract][Full Text] [Related]
50. Cross-comparison of methods for quantifying antibiotic resistance in agricultural soils amended with dairy manure and compost. Wind L; Krometis LA; Hession WC; Pruden A Sci Total Environ; 2021 Apr; 766():144321. PubMed ID: 33477102 [TBL] [Abstract][Full Text] [Related]
51. [Characteristics of Antibiotic Resistance Genes in Various Livestock Feedlot Soils of the Hilly Purple Soil Region]. Cheng JH; Tang XY; Liu C Huan Jing Ke Xue; 2019 Jul; 40(7):3257-3262. PubMed ID: 31854726 [TBL] [Abstract][Full Text] [Related]
52. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Wang C; Dong D; Strong PJ; Zhu W; Ma Z; Qin Y; Wu W Microbiome; 2017 Aug; 5(1):103. PubMed ID: 28814344 [TBL] [Abstract][Full Text] [Related]
53. [Distribution Characteristics of Antibiotic Resistance Genes in Sika Deer Farm]. Huang FY; An XL; Chen QL; Ren HY; Su JQ Huan Jing Ke Xue; 2016 Nov; 37(11):4402-4409. PubMed ID: 29964698 [TBL] [Abstract][Full Text] [Related]
54. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. Zalewska M; Błażejewska A; Szadziul M; Ciuchciński K; Popowska M Environ Sci Pollut Res Int; 2024 May; 31(21):30819-30835. PubMed ID: 38616224 [TBL] [Abstract][Full Text] [Related]
55. Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Blau K; Casadevall L; Wolters B; Van den Meersche T; Kreuzig R; Smalla K; Jechalke S FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29087461 [TBL] [Abstract][Full Text] [Related]
56. Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting. Wang Q; Gu J; Wang X; Ma J; Hu T; Peng H; Bao J; Zhang R Environ Pollut; 2020 Mar; 258():113654. PubMed ID: 31806457 [TBL] [Abstract][Full Text] [Related]
57. Dissipation of antibiotic resistance genes in manure-amended agricultural soil. He LY; He LK; Gao FZ; Wu DL; Zou HY; Bai H; Zhang M; Ying GG Sci Total Environ; 2021 Sep; 787():147582. PubMed ID: 33992936 [TBL] [Abstract][Full Text] [Related]
58. Antibiotic Resistance in Agricultural Soil and Crops Associated to the Application of Cow Manure-Derived Amendments From Conventional and Organic Livestock Farms. Jauregi L; Epelde L; Alkorta I; Garbisu C Front Vet Sci; 2021; 8():633858. PubMed ID: 33708812 [TBL] [Abstract][Full Text] [Related]
59. Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Liu C; Chen Y; Li X; Zhang Y; Ye J; Huang H; Zhu C Environ Pollut; 2020 Mar; 258():113652. PubMed ID: 31818620 [TBL] [Abstract][Full Text] [Related]
60. Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. Huang J; Mi J; Yan Q; Wen X; Zhou S; Wang Y; Ma B; Zou Y; Liao X; Wu Y Sci Total Environ; 2021 Sep; 787():147667. PubMed ID: 34004530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]